首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1860篇
  免费   171篇
  国内免费   116篇
化学   714篇
晶体学   5篇
力学   310篇
综合类   15篇
数学   318篇
物理学   785篇
  2024年   4篇
  2023年   14篇
  2022年   29篇
  2021年   33篇
  2020年   41篇
  2019年   43篇
  2018年   46篇
  2017年   54篇
  2016年   73篇
  2015年   48篇
  2014年   74篇
  2013年   126篇
  2012年   121篇
  2011年   120篇
  2010年   103篇
  2009年   110篇
  2008年   128篇
  2007年   118篇
  2006年   119篇
  2005年   96篇
  2004年   115篇
  2003年   87篇
  2002年   80篇
  2001年   61篇
  2000年   56篇
  1999年   44篇
  1998年   33篇
  1997年   37篇
  1996年   16篇
  1995年   12篇
  1994年   13篇
  1993年   12篇
  1992年   12篇
  1991年   8篇
  1990年   5篇
  1989年   10篇
  1988年   9篇
  1987年   8篇
  1986年   5篇
  1985年   4篇
  1984年   2篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1978年   2篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
  1957年   1篇
  1936年   1篇
排序方式: 共有2147条查询结果,搜索用时 0 毫秒
111.
Triblock copolymers in midblock‐selective solvents can form physical gels. However, at low triblock contents (near the percolation threshold), the bridging of chains between micelles can lead to macrophase separation. Adding a styrene–isoprene diblock to a styrene–isoprene–styrene triblock copolymer in squalane can eliminate macrophase separation, yielding a wide range of stable, single‐phase gels with a disordered arrangement of micelles. The plateau modulus of these triblock gels scales with the 2.2 power of polymer content, indicating the importance of entanglements in dictating the modulus. Comparing gels made from the midblock‐saturated derivative of the same polymer [styrene‐(ethylene‐alt‐propylene)‐styrene] in squalane reveals that the modulus differences in the gels are a direct consequence of the difference in the entanglement molecular weight of the midblock homopolymer in bulk. Finally, the broad relaxation spectrum of these triblocks is well‐described by a recent theory for the dynamics of entangled star polymers, with the breadth of the relaxation spectrum dictated by the number of entanglements per midblock in the gel. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2183–2197, 2001  相似文献   
112.
研究了带有苄氯基团的超支化聚苯乙烯引发苯乙烯和甲基丙烯酸甲酯的ATRP反应的动力学,在良溶剂氯苯中,该反应很容易发生凝胶.如果在氯苯溶剂中反应一段时间后,加入1,4-二氧六环作为不良溶剂,则能有效阻止凝胶反应,最终得到分子量超过百万的星形聚合物.  相似文献   
113.
Heuer DM  Saha S  Kusumo AT  Archer LA 《Electrophoresis》2004,25(12):1772-1783
The electrophoretic mobility of three-arm asymmetric star DNA molecules, produced by incorporating a short DNA branch at the midpoint of rigid-rod linear DNA fragments, is investigated in polyacrylamide gels. We determine how long the added branch must be to separate asymmetric star DNA from linear DNA with the same total molecular weight. This work focuses on two different geometric progressions of small DNA molecules. First, branches of increasing length were introduced at the center of a linear DNA fragment of constant length. At a given gel concentration, we find that relatively small branch lengths are enough to cause a detectable reduction in electrophoretic mobility. The second geometric progression starts with a small branch on a linear DNA fragment. As the length of this branch is increased, the DNA backbone length is decreased such that the total molar mass of the molecule remains constant. The branch length was then increased until the asymmetric branched molecule becomes a symmetric three-arm star polymer, allowing the effect of molecular topology on mobility to be studied independent of size effects. DNA molecules with very short branches have a mobility smaller than linear DNA of identical molar mass. The reason for this change in mobility when branching is introduced is not known, however, we explore two possible explanations in this article. (i) The branched DNA could have a greater interaction with the gel than linear DNA, causing it to move slower; (ii) the linear DNA could have modes of motion or access to pores that are unavailable to the branched DNA.  相似文献   
114.
Our recent extensive research on Lewis acid catalysts with a weak base for the cationic polymerization of vinyl ethers led to unprecedented living reaction systems: fast living polymerization within 1–3 s; a wide choice of metal halides containing Al, Sn, Fe, Ti, Zr, Hf, Zn, Ga, In, Si, Ge, and Bi; and heterogeneously catalyzed living polymerization with Fe2O3. The use of added bases for the stabilization of the propagating carbocation and the appropriate selection of Lewis acid catalysts were crucial to the success of such new types of living polymerizations. In addition, the base‐stabilized living polymerization allowed the quantitative synthesis of star‐shaped polymers with a narrow molecular weight distribution via polymer‐linking reactions and the precision synthesis and self‐assembly of stimuli‐responsive block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1801–1813, 2007.  相似文献   
115.
Summary: The theory of lamellar superstructures of an ABC 3‐miktoarm star terpolymer in the conditions corresponding to the strong segregation limit for linear ABC triblock terpolymer has been developed. According to the particular molecular topology (namely, the common junction point for all three blocks), the system cannot avoid volume interactions between monomers of different blocks even in this limit. Hence, in the lamellar superstructure, there exists the so‐called “mixed” domain containing monomers of all three blocks but formed mainly of the block with the lowest degree of incompatibility. It is shown that unfavorable volume interactions in this domain are minimized by the increase of the interfacial area per ABC molecule which makes the mixed domain narrow. This leads to an unusual behavior of the period of the superstructure which decreases with an increase in the length of the block with the lowest incompatibility. However, in the case of a “synchronous” increase in the size of the branches of the ABC 3‐miktoarm star terpolymer, the period of the superstructure increases similarly to that for a linear ABC triblock terpolymer.

ABC 3‐miktoarm star terpolymer.  相似文献   

116.
非线形嵌段共聚物的合成   总被引:1,自引:0,他引:1  
洪春雁  潘才元 《化学通报》2004,67(6):408-417
主要介绍了非线形嵌段共聚物,如星型嵌段共聚物、杂臂星型共聚物、梳型聚合物等的合成方法,包括多官能团引发剂法、大分子引发剂法等。各种活性聚合方法,如阳离子开环聚合、原子转移自由基聚合(ATRP)和氮氧稳定自由基聚合等都可以用于合成非线形嵌段共聚物。  相似文献   
117.
Wiped molecular distillation is one kind of molecu-lar distillations, and its difference from others comes from the force by which the evaporating liquid film is formed. With quick rotation of the wiper, the liquid becomes thin-film well distributed on th…  相似文献   
118.
New hyperbranched hydrophobic cross‐linkers with peripheral azide groups were synthesized as follows: First, star‐shaped polycaprolactones (sPCL) were synthesized by ring‐opening polymerization of caprolactone in the presence of pentaerythritol and tin (II) octoate. In the next step, sequential acrylation, Micheal addition, tosylation, and azidation by acryloyl chloride, diethanol amine, tosyl chloride, and sodium azide were respectively exploited to synthesize azide‐functionalized hyperbranched star‐shaped polycaprolactones which were named sPCL‐acrylate‐diethanolamine‐azide (sPCL‐AC‐DEA‐N3) and sPCL‐acrylate‐diethanolamine‐acrylate‐diethanolamine‐azide (sPCL‐AC‐DEA‐AC‐N3). All steps were thoroughly characterized by FT‐IR and 1H NMR spectroscopy. The GPC analysis showed that the molecular weight of sPCL increased after two azide functionalizations. Amphiphilic hydrogels based on sPCL‐AC‐DEA‐N3 (Mn = 8130 g/mol) and sPCL‐AC‐DEA‐AC‐N3 (Mn = 10112 g/mol) with linear alkyne‐terminated polyethylene glycols (PEG) (Mn = 2000, 4000, and 6000 g/mol) were synthesized through click coupling between azide and alkyne groups. In both hydrogels, the swelling ratio increased by increasing the molecular weight of PEG. The obtained results showed that the branching of the cross‐linker, significantly affected the swelling ratio of hydrogels. For instance, the swelling ratio of sPCL‐AC‐DEA‐AC‐N3 and PEG‐6000 (Q = 900) was higher than sPCL‐AC‐DEA‐N3 and PEG‐6000 (Q = 600). Despite the high cross‐linking density of sPCL‐AC‐DEA‐AC‐DEA‐N3–based hydrogels, the amount of released theophylline was higher than sPCL‐AC‐DEA‐N3–based hydrogels, due to the high content of PEG in these hydrogels.  相似文献   
119.
The miktoarm star‐shaped poly(lactic acid) (PLA) copolymer, (PLLA)2‐core‐(PDLA)2, was synthesized via stepwise ring‐opening polymerization of lactide with dibromoneopentyl glycol as the starting material. 1H NMR and FTIR spectroscopy proved the feasibility of synthetic route and the successful preparation of star‐shaped PLA copolymers. The results of FTIR spectroscopy and XRD showed that the stereocomplex structure of the copolymer could be more perfect after solvent dissolution treatment. Effect of chain architectures on crystallization was investigated by studying the nonisothermal and isothermal crystallization of the miktoarm star‐shaped PLA copolymer and other stereocomplexes. Nonisothermal differential scanning calorimetry and polarizing optical microscopy tests indicated that (PLLA)2‐core‐(PDLA)2 exhibited the fastest formation of a stereocomplex in a dynamic test due to its special structure. In isothermal crystallization tests, the copolymer exhibited the fast crystal growth rate and the most perfect crystal morphology. The results reveal that the unique molecular structure has an important influence on the crystallization of the miktoarm star‐shaped PLA copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 814–826  相似文献   
120.
A star network polymer with a pentaerythritol core linking four PEG-block polymeric arms was synthesized, and its corresponding gel polymer electrolyte based on lithium perchlorate and plasticizers EC/PC with the character being colorless and highly transparent has been also prepared. The polymer host was characterized and confirmed to be of a star network and an amorphous structure by FTIR, ^1H NMR and XRD studies. The polymer host hold good mechanical properties for pentaerythritol cross-linking. Maximum ionic conductivity of the prepared polymer electrolyte has reached 8.83 × 10 ^-4 S·cm^-1 at room temperature. Thermogravimetry (TG) of the polymer electrolyte showed that the thermal stability was up to at least 150 ℃. The gel polymer electrolyte was further evaluated in electrochromic devices fabricated by transparent PET-ITO and electrochromically active viologen derivative films, and its excellent performance promised the usage of the gel polymer electrolyte as ionic conductor material in electrochrornic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号