首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5259篇
  免费   407篇
  国内免费   327篇
化学   209篇
晶体学   2篇
力学   26篇
综合类   139篇
数学   5327篇
物理学   290篇
  2024年   23篇
  2023年   101篇
  2022年   176篇
  2021年   131篇
  2020年   202篇
  2019年   225篇
  2018年   218篇
  2017年   202篇
  2016年   124篇
  2015年   90篇
  2014年   176篇
  2013年   442篇
  2012年   191篇
  2011年   296篇
  2010年   297篇
  2009年   446篇
  2008年   386篇
  2007年   273篇
  2006年   317篇
  2005年   216篇
  2004年   197篇
  2003年   172篇
  2002年   164篇
  2001年   150篇
  2000年   138篇
  1999年   137篇
  1998年   115篇
  1997年   76篇
  1996年   48篇
  1995年   51篇
  1994年   39篇
  1993年   27篇
  1992年   25篇
  1991年   15篇
  1990年   12篇
  1989年   15篇
  1988年   15篇
  1987年   9篇
  1986年   4篇
  1985年   12篇
  1984年   12篇
  1983年   3篇
  1982年   10篇
  1981年   3篇
  1980年   3篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
排序方式: 共有5993条查询结果,搜索用时 11 毫秒
101.
《Discrete Mathematics》2022,345(12):113173
For a graph G, the unraveled ball of radius r centered at a vertex v is the ball of radius r centered at v in the universal cover of G. We obtain a lower bound on the weighted spectral radius of unraveled balls of fixed radius in a graph with positive weights on edges, which is used to present an upper bound on the sth (where s2) smallest normalized Laplacian eigenvalue of irregular graphs under minor assumptions. Moreover, when s=2, the result may be regarded as an Alon–Boppana type bound for a class of irregular graphs.  相似文献   
102.
A graph is said to be s-arc-regular if its full automorphism group acts regularly on the set of its s-arcs. In this paper, we investigate connected cubic s-arc-regular Cayley graphs of finite nonabelian simple groups. Two suffcient and necessary conditions for such graphs to be 1- or 2-arc-regular are given and based on the conditions, several infinite families of 1-or 2-arc-regular cubic Cayley graphs of alternating groups are constructed.  相似文献   
103.
For a graph G, a “spanning tree” in G is a tree that has the same vertex set as G. The number of spanning trees in a graph (network) G, denoted by t(G), is an important invariant of the graph (network) with lots of decisive applications in many disciplines. In the article by Sato (Discrete Math. 2007, 307, 237), the number of spanning trees in an (r, s)‐semiregular graph and its line graph are obtained. In this article, we give short proofs for the formulas without using zeta functions. Furthermore, by applying the formula that enumerates the number of spanning trees in the line graph of an (r, s)‐semiregular graph, we give a new proof of Cayley's Theorem. © 2013 Wiley Periodicals, Inc.  相似文献   
104.
Let (W,S)(W,S) be a Coxeter system with a strictly complete Coxeter graph. The present paper concerns the set Red(z)Red(z) of all reduced expressions for any z∈WzW. By associating each bc-expression to a certain symbol, we describe the set Red(z)Red(z) and compute its cardinal |Red(z)||Red(z)| in terms of symbols. An explicit formula for |Red(z)||Red(z)| is deduced, where the Fibonacci numbers play a crucial role.  相似文献   
105.
Gutman and Wagner proposed the concept of matching energy (ME) and pointed out that the chemical applications of ME go back to the 1970s. Let G be a simple graph of order n and be the roots of its matching polynomial. The ME of G is defined to be the sum of the absolute values of . In this article, we characterize the graphs with minimal ME among all unicyclic and bicyclic graphs with a given diameter d. © 2014 Wiley Periodicals, Inc. Complexity 21: 224–238, 2015  相似文献   
106.
Grooming uniform all‐to‐all traffic in optical (SONET) rings with grooming ratio C requires the determination of a decomposition of the complete graph into subgraphs each having at most C edges. The drop cost of such a grooming is the total number of vertices of nonzero degree in these subgraphs, and the grooming is optimal when the drop cost is minimum. The determination of optimal C‐groomings has been considered for , and completely solved for . For , it has been shown that the lower bound for the drop cost of an optimal C‐grooming can be attained for almost all orders with 5 exceptions and 308 possible exceptions. For , there are infinitely many unsettled orders; especially the case is far from complete. In this paper, we show that the lower bound for the drop cost of a 6‐grooming can be attained for almost all orders by reducing the 308 possible exceptions to 3, and that the lower bound for the drop cost of a 7‐grooming can be attained for almost all orders with seven exceptions and 16 possible exceptions. Moreover, for the unsettled orders, we give upper bounds for the minimum drop costs.  相似文献   
107.
Single crystals of (1,3‐diamino‐5‐azaniumyl‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)lithium(I) diiodide dihydrate, [Li(C6H16N3O3)(C6H15N3O3)]I2·2H2O or [Li(Htaci)(taci)]I2·2H2O (taci is 1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol), (I), bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)sodium(I) iodide, [Na(C6H15N3O3)2]I or [Na(taci)2]I, (II), and bis(1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol‐κ3O2,O4,O6)potassium(I) iodide, [K(C6H15N3O3)2]I or [K(taci)2]I, (III), were grown by diffusion of MeOH into aqueous solutions of the complexes. The structures of the Na and K complexes are isotypic. In all three complexes, the taci ligands adopt a chair conformation with axial hydroxy groups, and the metal cations exhibit exclusive O‐atom coordination. The six O atoms of the resulting MO6 unit define a centrosymmetric trigonal antiprism with approximate D3d symmetry. The interligand O...O distances increase significantly in the order Li < Na < K. The structure of (I) exhibits a complex three‐dimensional network of R—NH2—H...NH2R, R—O—H...NH2R and R—O—H...O(H)—H...NH2R hydrogen bonds. The structures of the Na and K complexes consist of a stack of layers, in which each taci ligand is bonded to three neighbours via pairwise O—H...NH2 interactions between vicinal HO—CH—CH—NH2 groups.  相似文献   
108.
We make a mapping from Sierpinski fractals to a new class of networks, the incompatibility networks, which are scale-free, small-world, disassortative, and maximal planar graphs. Some relevant characteristics of the networks such as degree distribution, clustering coefficient, average path length, and degree correlations are computed analytically and found to be peculiarly rich. The method of network representation can be applied to some real-life systems making it possible to study the complexity of real networked systems within the framework of complex network theory.  相似文献   
109.
We conjecture that the balanced complete bipartite graph Kn/2,n/2Kn/2,n/2 contains more cycles than any other nn-vertex triangle-free graph, and we make some progress toward proving this. We give equivalent conditions for cycle-maximal triangle-free graphs; show bounds on the numbers of cycles in graphs depending on numbers of vertices and edges, girth, and homomorphisms to small fixed graphs; and use the bounds to show that among regular graphs, the conjecture holds. We also consider graphs that are close to being regular, with the minimum and maximum degrees differing by at most a positive integer kk. For k=1k=1, we show that any such counterexamples have n≤91n91 and are not homomorphic to C5C5; and for any fixed kk there exists a finite upper bound on the number of vertices in a counterexample. Finally, we describe an algorithm for efficiently computing the matrix permanent (a #P#P-complete problem in general) in a special case used by our bounds.  相似文献   
110.
A 1‐factorization of a graph G is a decomposition of G into edge‐disjoint 1‐factors (perfect matchings), and a perfect 1‐factorization is a 1‐factorization in which the union of any two of the 1‐factors is a Hamilton cycle. We consider the problem of the existence of perfect 1‐factorizations of even order 4‐regular Cayley graphs, with a particular interest in circulant graphs. In this paper, we study a new family of graphs, denoted , which are Cayley graphs if and only if k is even or . By solving the perfect 1‐factorization problem for a large class of graphs, we obtain a new class of 4‐regular bipartite circulant graphs that do not have a perfect 1‐factorization, answering a problem posed in 7 . With further study of graphs, we prove the nonexistence of P1Fs in a class of 4‐regular non‐bipartite circulant graphs, which is further support for a conjecture made in 7 .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号