首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   15篇
  国内免费   55篇
化学   237篇
晶体学   4篇
力学   150篇
数学   413篇
物理学   216篇
  2024年   2篇
  2023年   16篇
  2022年   15篇
  2021年   6篇
  2020年   35篇
  2019年   13篇
  2018年   17篇
  2017年   35篇
  2016年   32篇
  2015年   25篇
  2014年   37篇
  2013年   73篇
  2012年   82篇
  2011年   70篇
  2010年   58篇
  2009年   52篇
  2008年   59篇
  2007年   38篇
  2006年   50篇
  2005年   35篇
  2004年   32篇
  2003年   23篇
  2002年   24篇
  2001年   17篇
  2000年   19篇
  1999年   14篇
  1998年   32篇
  1997年   13篇
  1996年   12篇
  1995年   9篇
  1994年   7篇
  1993年   4篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   9篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   5篇
  1977年   1篇
排序方式: 共有1020条查询结果,搜索用时 0 毫秒
101.
A series of sphere-rod shape amphiphiles were designed and synthesized by connecting the rod-like oligofluorenes with different lengths(OF_n) to the different positions of the spherical [60]fullerene(C_(60)) through a rigid linkage. The conjugates were characterized by ~1H-NMR, ~(13)C-NMR, FTIR, EA and MALDI-TOF mass spectrometry. The optical and electronic properties of the conjugates were studied by UV-Vis absorption spectroscopy, fluorescence spectrometry, and cyclic voltammetry. The results from UV-Vis absorption spectroscopy and cyclic voltammetry indicated that the energy profiles of C_(60) and OF_n remained unchanged when different lengths of OF_n were attached to C_(60). The electron affinities of the OF_n-C_(60) conjugates were close to that of C_(60), while slight electronic interaction was found between the two individual chromophores(C_(60) and OF_n) in their ground states. The fluorescence spectra exhibited a complete fluorescence quenching in the toluene solution, suggesting an effective energy transfer from OF_n to C_(60). It presents a systematic study on the selfassembly, structure-property relationship, and potential technical applications of the conjugates.  相似文献   
102.
This contribution deals with the nonlinear analysis of shape memory alloy (SMA) adaptive trusses employing the finite element method. Geometrical nonlinearities are incorporated into the formulation together with a constitutive model that describes different thermomechanical behaviors of SMA. It has four macroscopic phases (three variants of martensite and an austenitic phase), and considers different material properties for austenitic and martensitic phases together with thermal expansion. An iterative numerical procedure based on the operator split technique is proposed in order to deal with the nonlinearities in the constitutive formulation. This procedure is introduced into ABAQUS as a user material routine. Numerical simulations are carried out illustrating the ability of the developed model to capture the general behavior of shape memory bars. After that, it is analyzed the behavior of some adaptive trusses built with SMA actuators subjected to different thermomechanical loadings.  相似文献   
103.
This study examined the constitutive modeling of shape memory polyurethanes (SMPUs). SMPUs exhibit a thermo-responsive shape memory behavior, i.e., a thermally fixed temporary shape at a low temperature that returns to its original (permanent) shape when heated. This unique property arises from the molecular configuration of their hard and soft segments; the latter can form a variable state ranging from a rubbery (active) to rigid (frozen) phase according to temperature, while the former undergoes little deformation and acts as a fixed net between the soft segments. In this study, a three-phase phenomenological model (one hard segment phase and two (active and frozen) soft segment phases) was developed to describe the deformation behavior of SMPUs according to their microstructure. The stress and strain relationships of each phase are described mathematically using one three-element viscoelastic and two Mooney–Rivlin hyperelastic equations, respectively. The total stress was calculated by combining those equations via some internal variables that can track the volume fractions of the active and frozen phases and a non-mechanical frozen strain. For validation, the cyclic thermo-mechanical behavior of a SMPU was predicted. These predictions were compared with the experimental results with reasonable agreement between them.  相似文献   
104.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modelling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   
105.
A constitutive theory is developed for shape memory polymers. It is to describe the thermomechanical properties of such materials under large deformations. The theory is based on the idea, which is developed in the work of Liu et al. [2006. Thermomechanics of shape memory polymers: uniaxial experiments and constitutive modeling. Int. J. Plasticity 22, 279-313], that the coexisting active and frozen phases of the polymer and the transitions between them provide the underlying mechanisms for strain storage and recovery during a shape memory cycle. General constitutive functions for nonlinear thermoelastic materials are used for the active and frozen phases. Also used is an internal state variable which describes the volume fraction of the frozen phase. The material behavior of history dependence in the frozen phase is captured by using the concept of frozen reference configuration. The relation between the overall deformation and the stress is derived by integration of the constitutive equations of the coexisting phases. As a special case of the nonlinear constitutive model, a neo-Hookean type constitutive function for each phase is considered. The material behaviors in a shape memory cycle under uniaxial loading are examined. A linear constitutive model is derived from the nonlinear theory by considering small deformations. The predictions of this model are compared with experimental measurements.  相似文献   
106.
We study the coupled thermo-mechanical problem that is obtained by combining generalized standard materials with Fourier’s law for heat conduction. The analysis is conducted in the framework of non-smooth mechanics in order to account for possible constraints on the state variables. This allows models of damage and phase-transformation to be included in the analysis. In view of performing numerical simulations, an incremental thermo-mechanical problem and corresponding variational principles are introduced. Conditions for existence of solutions to the incremental problem are discussed and compared with the isothermal case. The numerical implementation of the proposed approach is studied in detail. In particular, it is shown that the incremental thermo-mechanical problem can be recast as a concave maximization problem and ultimately amounts to solve a sequence of linear thermal problems and purely mechanical (i.e. at a prescribed temperature field) problems. Therefore, using the proposed approach, thermo-mechanical coupling can be implemented with low additional complexity compared to the isothermal case, while still relying on a sound mathematical framework. As an application, thermo-mechanical coupling in shape memory alloys is studied. The influence of the loading strain-rate on the phase transformation and on the overall stress–strain response is investigated, as well as the influence of the thermal boundary conditions. The numerical results obtained by the proposed approach are compared with numerical and experimental results from the literature.  相似文献   
107.
108.
Two natural questions are answered in the negative:
• “If a space has the property that small nulhomotopic loops bound small nulhomotopies, then are loops which are limits of nulhomotopic loops themselves nulhomotopic?”

• “Can adding arcs to a space cause an essential curve to become nulhomotopic?”

The answer to the first question clarifies the relationship between the notions of a space being homotopically Hausdorff and π1-shape injective.

Keywords: Peano continuum; Path space; Shape injective; Homotopically Hausdorff; 1-ULC  相似文献   

109.
We formulate a multiscale modeling framework to investigate the deformation morphologies and energetics of covalently bridged multi-walled carbon nanotubes (MWCNTs). The formulation involves extending a previously established quasi-continuum model by incorporating the inter-wall bridging energy density function into the constitutive relations via message passing from fully atomistic simulations. Using the extended numerical model, we studied the mechanical responses of the 10-walled MWCNT with varying inter-wall bridge densities under torsion, bending, and uniaxial compression. Our simulation results show that the presence of inter-wall covalent bridges not only enhances the post-buckling rigidities of the MWCNTs, but also modifies the deformation morphologies and morphology pathways. For bending and uniaxial compression, we constructed in the space of bridge density and applied strain the deformation morphology phase diagram, where three phases, uniformly deformed phase, rippling pattern, and diamond-shaped pattern, are identified and separated by linear phase boundaries. We attribute the deformation phase transitions to the interplay of inter-wall and intra-wall interaction energies. The multiple shape transitions of MWCNTs and the elastic nature of the deformation suggest that MWCNTs can be designed as shape-memory nanodevices with tunable stabilities.  相似文献   
110.
J. Yáñez  J. Montero 《TOP》1993,1(1):117-125
Barlow-Wu continuum structure functions have been introduced in the past as one particularly interesting family of continuum structure functions. In this paper we provide an alternative characterization for such continuum structure functions, showing other interesting properties. Research supported by Dirección General de Investigación Científica y Técnica (DGICYT), national grants number PB91-0389 and number BE91-225.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号