首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23345篇
  免费   839篇
  国内免费   618篇
化学   4153篇
晶体学   137篇
力学   670篇
综合类   72篇
数学   14032篇
物理学   5738篇
  2024年   21篇
  2023年   191篇
  2022年   264篇
  2021年   302篇
  2020年   434篇
  2019年   552篇
  2018年   524篇
  2017年   440篇
  2016年   405篇
  2015年   453篇
  2014年   804篇
  2013年   1202篇
  2012年   703篇
  2011年   1775篇
  2010年   1244篇
  2009年   1547篇
  2008年   1826篇
  2007年   1721篇
  2006年   1319篇
  2005年   1075篇
  2004年   904篇
  2003年   705篇
  2002年   649篇
  2001年   435篇
  2000年   443篇
  1999年   473篇
  1998年   400篇
  1997年   325篇
  1996年   402篇
  1995年   409篇
  1994年   375篇
  1993年   330篇
  1992年   285篇
  1991年   180篇
  1990年   154篇
  1989年   152篇
  1988年   108篇
  1987年   135篇
  1986年   121篇
  1985年   153篇
  1984年   104篇
  1983年   80篇
  1982年   140篇
  1981年   103篇
  1980年   98篇
  1979年   61篇
  1978年   89篇
  1977年   80篇
  1976年   71篇
  1975年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Sustainable materials have slowly overtaken the nanofiber research field while the tailoring of their properties and the upscaling for industrial production are some of the major challenges. We report preparation of nanofibers that are bio-based and biodegradable prepared from poly (butylene succinate) (PBS) with the incorporation of nanofibrillated cellulose (NFC) and graphene nanoplatelets (GN). NFC and GN were combined as hybrid filler, which led to the improved morphological structure for electrospun nanofibers. A needleless approach was used for solution electrospinning fabrication of nanofiber mesh structures to promote application scalability. The polymer crystallization process was examined by differential scanning calorimetry (DSC), the thermal stability was evaluated by thermal gravimetric analysis (TGA), while the extensive investigation of the nanofibers structure was carried out with scanning electron microscopy (SEM) and atomic force microscopy (AFM). NFC and GN loadings were 0.5 and 1.0 wt %; while poly (ethylene glycol) (PEG) was employed as a compatibilizer to enhance fillers’ interaction within the polymer matrix. The interactions in the interface of the fillers and matrix components were studied by FTIR and Raman spectroscopies. The hybrid filler approach proved to be most suitable for consistent and high-quality nanofiber production. The obtained dense mesh-based structures could have foreseeable potential application in biomedical field like scaffolds for the tissue and bone recovery, while other applications could focus on filtration technologies and smart sensors.  相似文献   
992.
A polyolefin with certified biocompatibility according to USP class VI was used by our group as feedstock for filament-based 3D printing to meet the highest medical standards in order to print personal protective equipment for our university hospital during the ongoing pandemic. Besides the chemical resistance and durability, as well as the ability to withstand steam sterilization, this polypropylene (PP) copolymer is characterized by its high purity, as achieved by highly efficient and selective catalytic polymerization. As the PP copolymer is suited to be printed with all common printers in fused filament fabrication (FFF), it offers an eco-friendly cost–benefit ratio, even for large-scale production. In addition, a digital workflow was established focusing on common desktop FFF printers in the medical sector. It comprises the simulation-based optimization of personalized print objects, considering the inherent material properties such as warping tendency, through to validation of the process chain by 3D scanning, sterilization, and biocompatibility analysis of the printed part. This combination of digital data processing and 3D printing with a sustainable and medically certified material showed great promise in establishing decentralized additive manufacturing in everyday hospital life to meet peaks in demand, supply bottlenecks, and enhanced personalized patient treatment.  相似文献   
993.
The iridium half‐sandwich complex [Ir(η51‐C5Me4CH2py)(2‐phenylpyridine)]PF6 is highly cytotoxic: 15–250× more potent than clinically used cisplatin in several cancer cell lines. We have developed a correlative 3D cryo X‐ray imaging approach to specifically localize and quantify iridium within the whole hydrated cell at nanometer resolution. By means of cryo soft X‐ray tomography (cryo‐SXT), which provides the cellular ultrastructure at 50 nm resolution, and cryo hard X‐ray fluorescence tomography (cryo‐XRF), which provides the elemental sensitivity with a 70 nm step size, we have located the iridium anticancer agent exclusively in the mitochondria. Our methodology provides unique information on the intracellular fate of the metallodrug, without chemical fixation, labeling, or mechanical manipulation of the cells. This cryo‐3D correlative imaging method can be applied to a number of biochemical processes for specific elemental localization within the native cellular landscape.  相似文献   
994.
The reduced dimension perovskite including 2D perovskites are one of the most promising strategies to stabilize lead halide perovskite. A mixed‐cation 2D perovskite based on a steric phenyltrimethylammonium (PTA) cation is presented. The PTA‐MA mixed‐cation 2D perovskite of PTAMAPbI4 can be formed on the surface of MAPbI3 (PTAI‐MAPbI3) by controllable PTAI intercalation by either spin coating or soaking. The PTAMAPbI4 capping layer can not only passivate PTAI‐MAPbI3 perovskite but also act as MA+ locker to inhibit MAI extraction and significantly enhance the stability. The highly stable PTAI‐MAPbI3 based perovskite solar cells exhibit a reproducible photovoltaic performance with a champion PCE of 21.16 %. Such unencapsulated devices retain 93 % of initial efficiency after 500 h continuous illumination. This steric mixed‐cation 2D perovskite as MA+ locker to stabilize the MAPbI3 is a promising strategy to design stable and high‐performance hybrid lead halide perovskites.  相似文献   
995.
Two‐dimensional (2D) nanomaterials are currently explored as novel photothermal agents because of their ultrathin structure, high specific surface area, and unique optoelectronic properties. In addition to single photothermal therapy (PTT), 2D nanomaterials have demonstrated significant potential in PTT‐based synergistic therapies. In this Minireview, we summarize the recent progress in 2D nanomaterials for enhanced photothermal cancer therapy over the last five years. Their unique optical properties, typical synthesis methods, and surface modification are also covered. Emphasis is placed on their PTT and PTT‐synergized chemotherapy, photodynamic therapy, and immunotherapy. The major challenges of 2D photothermal agents are addressed and the promising prospects are also presented.  相似文献   
996.
We report the synthesis of a set of 2D metal–organic frameworks (MOFs) constructed with organosilicon‐based linkers. These oligosilyl MOFs feature linear SinMe2n(C6H4CO2H)2 ligands (lin‐Sin, n=2, 4) connected by Cu paddlewheels. The stacking arrangement of the 2D sheets is dictated by van der Waals interactions and is tunable by solvent exchange, leading to reversible structural transformations between many crystalline and amorphous phases.  相似文献   
997.
Stapled peptides are chemical entities in‐between biologics and small molecules, which have proven to be the solution to high affinity protein–protein interaction antagonism, while keeping control over pharmacological performance such as stability and membrane penetration. We demonstrate that the multicomponent reaction‐based stapling is an effective strategy for the development of α‐helical peptides with highly potent dual antagonistic action of MDM2 and MDMX binding p53. Such a potent inhibitory activity of p53‐MDM2/X interactions was assessed by fluorescence polarization, microscale thermophoresis, and 2D NMR, while several cocrystal structures with MDM2 were obtained. This MCR stapling protocol proved efficient and versatile in terms of diversity generation at the staple, as evidenced by the incorporation of both exo‐ and endo‐cyclic hydrophobic moieties at the side chain cross‐linkers. The interaction of the Ugi‐staple fragments with the target protein was demonstrated by crystallography.  相似文献   
998.
This work reports a novel fabrication technique for development of channels on paper‐based microfluidic devices using the syringe module of a 3D printing syringe–based system. In this study, printing using polycaprolactone (PCL)‐based ink (Mw 70 000‐90 000) was employed for the generation of functional hydrophobic barriers on Whatman qualitative filter paper grade 1 (approximate thickness of 180 μm and pore diameter of 11 μm), which would effectively channelize fluid flow to multiple assay zones dedicated for different analyte detection on a microfluidic paper‐based analytical device (μPAD). The standardization studies reveal that a functional hydrophilic channel for sample conduction fabricated using the reported technique can be as narrow as 460.7 ± 20 μm and a functional hydrophobic barrier can be of any width with a lower limit of about 982.2 ± 142.75 μm when a minimum number of two layers of the ink is extruded onto paper. A comparison with the hydrodynamic model established for writing with ink is used to explain the width of the line printed by this system. A fluid flow analysis through a single channel system was also carried out to establish its conformity with the Washburn model, which governs the fluid flow in two‐dimensional μPAD. The presented fabrication technique proves to be a robust strategy that effectively taps the advantages of this 3D printing technique in the production of μPADs with enhanced speed and reproducibility.  相似文献   
999.
脯氨酸类衍生物结构独特,鲜有报道利用核磁共振(nuclear magnetic resonance,NMR)技术对氨基酸的手性进行鉴别.利用多种NMR技术:1H NMR、1H-1H同核位移相关谱(1H-1H COSY)、1H-1H质子全相关谱(1H-1H TOCSY)、1H-1H核Overhauser效应谱(1H-1H NOESY)、13C NMR、无畸变的极化转移增强法(DEPT135°)、1H-13C检出1H的异核单量子相干(1H-13C HSQC)和1H-13C检出1H的异核多键相关(1H-13C HMBC),对脯氨酸类N-酰胺衍生物两种构象异构体的1H和13C NMR进行了全归属,确定了室温下在二甲基亚砜(DMSO)中L型和D型的顺反异构体以相同的比例同时存在.  相似文献   
1000.
The development of size‐selective membranes with well‐defined nanopores towards the precise separation of nanometer‐sized substances is a challenging task to achieve. Here a supramolecular membrane is presented that comprises a highly oriented, honeycomb‐like, 2D supramolecular polymer on a polycarbonate filter support. It enables precise size‐selective sieving of colloidal nanoparticles (NPs). Owing to the uniform parallel‐aligned nanocavities within the 2D supramolecular polymers, the composite membrane shows a high size‐selectivity with a sub‐nanometer accuracy in the cutoff size of about 4.0 nm. In principle, the species of size‐separable particles are unlimited, as demonstrated by quantum dots, noble metal, and metal oxide NPs. This supramolecular membrane combined with filtration advances the potential of NPs in terms of their monochromatic emission and size monodispersity, and also enables rapid removal of small magnetic NP adsorbents that are otherwise difficult to capture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号