首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8949篇
  免费   1122篇
  国内免费   346篇
化学   753篇
晶体学   14篇
力学   1032篇
综合类   324篇
数学   5486篇
物理学   2808篇
  2024年   22篇
  2023年   90篇
  2022年   296篇
  2021年   269篇
  2020年   187篇
  2019年   206篇
  2018年   226篇
  2017年   340篇
  2016年   444篇
  2015年   294篇
  2014年   544篇
  2013年   601篇
  2012年   488篇
  2011年   543篇
  2010年   430篇
  2009年   570篇
  2008年   585篇
  2007年   595篇
  2006年   480篇
  2005年   433篇
  2004年   374篇
  2003年   316篇
  2002年   296篇
  2001年   252篇
  2000年   226篇
  1999年   194篇
  1998年   182篇
  1997年   158篇
  1996年   135篇
  1995年   104篇
  1994年   71篇
  1993年   82篇
  1992年   71篇
  1991年   38篇
  1990年   44篇
  1989年   28篇
  1988年   30篇
  1987年   23篇
  1986年   29篇
  1985年   29篇
  1984年   28篇
  1983年   9篇
  1982年   18篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   3篇
  1977年   5篇
  1959年   5篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
分析了多群辐射扩散方程组的分裂迭代算法的收敛速度,证明其收敛特性,给出迭代矩阵谱半径的解析公式.对谱半径进行数值计算与分析,揭示算法的收敛速度与辐射系数之间的依赖关系,数值算例验证了理论结果,给出了该算法的适用条件.  相似文献   
62.
采用辛算法及经典理论方法,计算了HF分子在啁啾激光作用下的经典解离,讨论了解离几率随激光强度的变化,以及在相同激光强度下,选取不同的振动态作为初始态时解离几率的变化.  相似文献   
63.
双色激光场中1维共线氢分子离子的经典动力学研究   总被引:3,自引:0,他引:3       下载免费PDF全文
 运用经典理论方法,并采用辛算法数值求解了双色激光场作用下1维共线氢分子离子(H2+)的哈密顿正则方程,得到了氢分子离子在激光场下的经典轨迹。计算了单色场和双色场下氢分子离子(H2+)的存活几率、电离几率、解离几率、库仑爆炸几率随时间的演化,分析了双色场的相位、强度、强度比及倍频的变化对氢分子离子动力学行为的影响,并给出了相应的物理解释。  相似文献   
64.
龙桂鲁 《物理》2006,35(5):388-389
在清华大学物理系成立60周年之际,我们对近年来清华大学物理系量子信息研究的主要进展情况作一介绍,包括量子搜索算法研究,核磁共振量子计算的实验研究,量子通讯的理论与实验研究.在量子搜索算法研究方面,我们提出了量子搜索算法的相位匹配,纠正了当时的一种错误观点,并且提出了一种成功率为100%的量子搜索算法,改进了Grover算法;在核磁共振量子计算实验方面,我们实现了2到7个量子比特的多种量子算法的实验演示;在量子通讯方面,我们提出了分布式传输的量子通讯的思想,应用于量子密钥分配、量子秘密共享、量子直接安全通讯等方面,构造了多个量子通讯的理论方案.在实验室,我们实现了2米距离的空间量子密码通讯的演示实验.  相似文献   
65.
Quantum machine learning based on quantum algorithms may achieve an exponential speedup over classical algorithms in dealing with some problems such as clustering. In this paper, we use the method of training the lower bound of the average log likelihood function on the quantum Boltzmann machine (QBM) to recognize the handwritten number datasets and compare the training results with classical models. We find that, when the QBM is semi-restricted, the training results get better with fewer computing resources. This shows that it is necessary to design a targeted algorithm to speed up computation and save resources.  相似文献   
66.
Rolling bearings act as key parts in many items of mechanical equipment and any abnormality will affect the normal operation of the entire apparatus. To diagnose the faults of rolling bearings effectively, a novel fault identification method is proposed by merging variational mode decomposition (VMD), average refined composite multiscale dispersion entropy (ARCMDE) and support vector machine (SVM) optimized by multistrategy enhanced swarm optimization in this paper. Firstly, the vibration signals are decomposed into different series of intrinsic mode functions (IMFs) based on VMD with the center frequency observation method. Subsequently, the proposed ARCMDE, fusing the superiorities of DE and average refined composite multiscale procedure, is employed to enhance the ability of the multiscale fault-feature extraction from the IMFs. Afterwards, grey wolf optimization (GWO), enhanced by multistrategy including levy flight, cosine factor and polynomial mutation strategies (LCPGWO), is proposed to optimize the penalty factor C and kernel parameter g of SVM. Then, the optimized SVM model is trained to identify the fault type of samples based on features extracted by ARCMDE. Finally, the application experiment and contrastive analysis verify the effectiveness of the proposed VMD-ARCMDE-LCPGWO-SVM method.  相似文献   
67.
Instance matching is a key task in knowledge graph fusion, and it is critical to improving the efficiency of instance matching, given the increasing scale of knowledge graphs. Blocking algorithms selecting candidate instance pairs for comparison is one of the effective methods to achieve the goal. In this paper, we propose a novel blocking algorithm named MultiObJ, which constructs indexes for instances based on the Ordered Joint of Multiple Objects’ features to limit the number of candidate instance pairs. Based on MultiObJ, we further propose a distributed framework named Follow-the-Regular-Leader Instance Matching (FTRLIM), which matches instances between large-scale knowledge graphs with approximately linear time complexity. FTRLIM has participated in OAEI 2019 and achieved the best matching quality with significantly efficiency. In this research, we construct three data collections based on a real-world large-scale knowledge graph. Experiment results on the constructed data collections and two real-world datasets indicate that MultiObJ and FTRLIM outperform other state-of-the-art methods.  相似文献   
68.
A misalignment fault is a kind of potential fault in double-fed wind turbines. The reasonable and effective fault prediction models are used to predict its development trend before serious faults occur, which can take measures to repair in advance and reduce human and material losses. In this paper, the Least Squares Support Vector Machine optimized by the Improved Artificial Fish Swarm Algorithm is used to predict the misalignment index of the experiment platform. The mixed features of time domain, frequency domain, and time-frequency domain indexes of vibration or stator current signals are the inputs of the Least Squares Support Vector Machine. The kurtosis of the same signals is the output of the model, and the 3σ principle of the normal distribution is adopted to set the warning line of misalignment fault. Compared with other optimization algorithms, the experimental results show that the proposed prediction model can predict the development trend of the misalignment index with the least prediction error.  相似文献   
69.
The traditional sequential pattern mining method is carried out considering the whole time period and often ignores the sequential patterns that only occur in local time windows, as well as possible periodicity. Therefore, in order to overcome the limitations of traditional methods, this paper proposes status set sequential pattern mining with time windows (SSPMTW). In contrast to traditional methods, the item status is considered, and time windows, minimum confidence, minimum coverage, minimum factor set ratios and other constraints are added to mine more valuable rules in local time windows. The periodicity of these rules is also analyzed. According to the proposed method, this paper improves the Apriori algorithm, proposes the TW-Apriori algorithm, and explains the basic idea of the algorithm. Then, the feasibility, validity and efficiency of the proposed method and algorithm are verified by small-scale and large-scale examples. In a large-scale numerical example solution, the influence of various constraints on the mining results is analyzed. Finally, the solution results of SSPM and SSPMTW are compared and analyzed, and it is suggested that SSPMTW can excavate the laws existing in local time windows and analyze the periodicity of the laws, which solves the problem of SSPM ignoring the laws existing in local time windows and overcomes the limitations of traditional sequential pattern mining algorithms. In addition, the rules mined by SSPMTW reduce the entropy of the system.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号