首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   0篇
  国内免费   3篇
化学   4篇
力学   4篇
数学   178篇
物理学   10篇
  2023年   5篇
  2022年   3篇
  2021年   6篇
  2020年   4篇
  2019年   4篇
  2018年   8篇
  2017年   1篇
  2016年   6篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   7篇
  2011年   10篇
  2010年   13篇
  2009年   21篇
  2008年   14篇
  2007年   8篇
  2006年   10篇
  2005年   10篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1983年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
51.
ABC (approximate Bayesian computation) is a general approach for dealing with models with an intractable likelihood. In this work, we derive ABC algorithms based on QMC (quasi-Monte Carlo) sequences. We show that the resulting ABC estimates have a lower variance than their Monte Carlo counter-parts. We also develop QMC variants of sequential ABC algorithms, which progressively adapt the proposal distribution and the acceptance threshold. We illustrate our QMC approach through several examples taken from the ABC literature.  相似文献   
52.
We study the approximation problem (or problem of optimal recovery in the $L_2$-norm) for weighted Korobov spaces with smoothness parameter $\a$. The weights $\gamma_j$ of the Korobov spaces moderate the behavior of periodic functions with respect to successive variables. The nonnegative smoothness parameter $\a$ measures the decay of Fourier coefficients. For $\a=0$, the Korobov space is the $L_2$ space, whereas for positive $\a$, the Korobov space is a space of periodic functions with some smoothness and the approximation problem corresponds to a compact operator. The periodic functions are defined on $[0,1]^d$ and our main interest is when the dimension $d$ varies and may be large. We consider algorithms using two different classes of information. The first class $\lall$ consists of arbitrary linear functionals. The second class $\lstd$ consists of only function values and this class is more realistic in practical computations. We want to know when the approximation problem is tractable. Tractability means that there exists an algorithm whose error is at most $\e$ and whose information cost is bounded by a polynomial in the dimension $d$ and in $\e^{-1}$. Strong tractability means that the bound does not depend on $d$ and is polynomial in $\e^{-1}$. In this paper we consider the worst case, randomized, and quantum settings. In each setting, the concepts of error and cost are defined differently and, therefore, tractability and strong tractability depend on the setting and on the class of information. In the worst case setting, we apply known results to prove that strong tractability and tractability in the class $\lall$ are equivalent. This holds if and only if $\a>0$ and the sum-exponent $s_{\g}$ of weights is finite, where $s_{\g}= \inf\{s>0 : \xxsum_{j=1}^\infty\g_j^s\,<\,\infty\}$. In the worst case setting for the class $\lstd$ we must assume that $\a>1$ to guarantee that functionals from $\lstd$ are continuous. The notions of strong tractability and tractability are not equivalent. In particular, strong tractability holds if and only if $\a>1$ and $\xxsum_{j=1}^\infty\g_j<\infty$. In the randomized setting, it is known that randomization does not help over the worst case setting in the class $\lall$. For the class $\lstd$, we prove that strong tractability and tractability are equivalent and this holds under the same assumption as for the class $\lall$ in the worst case setting, that is, if and only if $\a>0$ and $s_{\g} < \infty$. In the quantum setting, we consider only upper bounds for the class $\lstd$ with $\a>1$. We prove that $s_{\g}<\infty$ implies strong tractability. Hence for $s_{\g}>1$, the randomized and quantum settings both break worst case intractability of approximation for the class $\lstd$. We indicate cost bounds on algorithms with error at most $\e$. Let $\cc(d)$ denote the cost of computing $L(f)$ for $L\in \lall$ or $L\in \lstd$, and let the cost of one arithmetic operation be taken as unity. The information cost bound in the worst case setting for the class $\lall$ is of order $\cc (d) \cdot \e^{-p}$ with $p$ being roughly equal to $2\max(s_\g,\a^{-1})$. Then for the class $\lstd$ in the randomized setting, we present an algorithm with error at most $\e$ and whose total cost is of order $\cc(d)\e^{-p-2} + d\e^{-2p-2}$, which for small $\e$ is roughly $$ d\e^{-2p-2}. $$ In the quantum setting, we present a quantum algorithm with error at most $\e$ that uses about only $d + \log \e^{-1}$ qubits and whose total cost is of order $$ (\cc(d) +d) \e^{-1-3p/2}. $$ The ratio of the costs of the algorithms in the quantum setting and the randomized setting is of order $$ \frac{d}{\cc(d)+d}\,\left(\frac1{\e}\right)^{1+p/2}. $$ Hence, we have a polynomial speedup of order $\e^{-(1+p/2)}$. We stress that $p$ can be arbitrarily large, and in this case the speedup is huge.  相似文献   
53.
We present a generalization of the mixed integer rounding (MIR) approach for generating valid inequalities for (mixed) integer programming (MIP) problems. For any positive integer n, we develop n facets for a certain (n + 1)-dimensional single-constraint polyhedron in a sequential manner. We then show that for any n, the last of these facets (which we call the n-step MIR facet) can be used to generate a family of valid inequalities for the feasible set of a general (mixed) IP constraint, which we refer to as the n-step MIR inequalities. The Gomory Mixed Integer Cut and the 2-step MIR inequality of Dash and günlük  (Math Program 105(1):29–53, 2006) are the first two families corresponding to n = 1,2, respectively. The n-step MIR inequalities are easily produced using periodic functions which we refer to as the n-step MIR functions. None of these functions dominates the other on its whole period. Finally, we prove that the n-step MIR inequalities generate two-slope facets for the infinite group polyhedra, and hence are potentially strong.   相似文献   
54.
We study the problem of sampling uniformly at random from the set of k-colorings of a graph with maximum degree Δ. We focus attention on the Markov chain Monte Carlo method, particularly on a popular Markov chain for this problem, the Wang–Swendsen–Kotecký (WSK) algorithm. The second author recently proved that the WSK algorithm quickly converges to the desired distribution when k11Δ/6. We study how far these positive results can be extended in general. In this note we prove the first non-trivial results on when the WSK algorithm takes exponentially long to reach the stationary distribution and is thus called torpidly mixing. In particular, we show that the WSK algorithm is torpidly mixing on a family of bipartite graphs when 3k<Δ/(20logΔ), and on a family of planar graphs for any number of colors. We also give a family of graphs for which, despite their small chromatic number, the WSK algorithm is not ergodic when kΔ/2, provided k is larger than some absolute constant k0.  相似文献   
55.
In this article, we analyze approximate methods for undertaking a principal components analysis (PCA) on large datasets. PCA is a classical dimension reduction method that involves the projection of the data onto the subspace spanned by the leading eigenvectors of the covariance matrix. This projection can be used either for exploratory purposes or as an input for further analysis, for example, regression. If the data have billions of entries or more, the computational and storage requirements for saving and manipulating the design matrix in fast memory are prohibitive. Recently, the Nyström and column-sampling methods have appeared in the numerical linear algebra community for the randomized approximation of the singular value decomposition of large matrices. However, their utility for statistical applications remains unclear. We compare these approximations theoretically by bounding the distance between the induced subspaces and the desired, but computationally infeasible, PCA subspace. Additionally we show empirically, through simulations and a real data example involving a corpus of emails, the trade-off of approximation accuracy and computational complexity.  相似文献   
56.
均匀设计抽样的偏差   总被引:10,自引:0,他引:10  
该文证明了均匀设计抽样点集的偏差为O(n-1(lnn)d),另外也证明了随机化均匀设计点集的偏差有同样的阶.最后进行了随机模拟.  相似文献   
57.
Our randomized preprocessing enables pivoting-free and orthogonalization-free solution of homogeneous linear systems of equations. In the case of Toeplitz inputs, we decrease the estimated solution time from quadratic to nearly linear, and our tests show dramatic decrease of the CPU time as well. We prove numerical stability of our approach and extend it to solving nonsingular linear systems, inversion and generalized (Moore-Penrose) inversion of general and structured matrices by means of Newton’s iteration, approximation of a matrix by a nearby matrix that has a smaller rank or a smaller displacement rank, matrix eigen-solving, and root-finding for polynomial and secular equations and for polynomial systems of equations. Some by-products and extensions of our study can be of independent technical intersest, e.g., our extensions of the Sherman-Morrison-Woodbury formula for matrix inversion, our estimates for the condition number of randomized matrix products, and preprocessing via augmentation.  相似文献   
58.
A recent trend in local search concerns the exploitation of several different neighborhoods so as to increase the ability of the algorithm to navigate the search space. In this work we investigate a hybridization technique, that we call Neighborhood Portfolio Approach, that consists in the interleave of local search techniques based on various combinations of neighborhoods. In particular, we are able to select the most effective search technique through a systematic analysis of all meaningful combinations built upon a set of basic neighborhoods. The proposed approach is applied to two practical problems belonging to the timetabling family, and systematically tested and compared on real-world instances. The experimental analysis shows that our approach leads to automatic design of new algorithms that provide better results than basic local search techniques.  相似文献   
59.
We propose a signal analysis tool based on the sign (or the phase) of complex wavelet coefficients, which we call a signature. The signature is defined as the fine-scale limit of the signs of a signal's complex wavelet coefficients. We show that the signature equals zero at sufficiently regular points of a signal whereas at salient features, such as jumps or cusps, it is non-zero. At such feature points, the orientation of the signature in the complex plane can be interpreted as an indicator of local symmetry and antisymmetry. We establish that the signature rotates in the complex plane under fractional Hilbert transforms. We show that certain random signals, such as white Gaussian noise and Brownian motions, have a vanishing signature. We derive an appropriate discretization and show the applicability to signal analysis.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号