首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   1篇
数学   8篇
物理学   3篇
  2019年   1篇
  2013年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2006年   2篇
  2004年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
11.
In the article, results of numerical simulation of the gun with the cusp of magnetic field are presented. Short pulse version of the gun with explosion emission is investigated. Some preliminary analytical estimation of the beam and gun parameters are performed. Then, numerical optimization of the electrodes shape as well as magnetic field distribution is carried out. For preliminary separation of electrons and formation of the rectilinear beam, anode diaphragm is installed. After then, additional selection of electrons for decreasing the ripple is performed. For this purpose, channel walls are used for interception of some part of the electron beam. Reverse of the magnetic field in the diode part of the gun is formed. So, the formation of the rectilinear beam is combined with the region, where electrons obtain initial gyration energy. To prevent the disperse action of the own beam space charge forces, the system with big gradient of magnetic field (about 0.5-1 kGs/mm) is needed. According to results of the simulation, helical electron beam can be performed even at total compression ratio about 1000 and current density more than 50 kA/cm2. The designed electron gun provides acceptable performance for the large orbit gyrotron, such as operating current close to 300 A, the pitch-factor value about 1.5-1.7, deviation of the guiding centers from the axis (the ripple) /10 and /6 for operation on 3-rd and 5-th cyclotron harmonic correspondingly (wavelength =0.5 and 0.3 mm) and velocity spread within the range 10-15%.  相似文献   
12.
According to simulations, a Large Orbit Gyrotron with a 30 keV/1 A electron beam and magnetic field of 5 T can produce CW radiation with output power of 102−103 W at the frequencies of 0.4–0.5 THz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号