首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   375篇
  免费   10篇
  国内免费   22篇
化学   19篇
力学   11篇
综合类   4篇
数学   364篇
物理学   9篇
  2023年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   9篇
  2017年   11篇
  2016年   10篇
  2015年   3篇
  2014年   5篇
  2013年   53篇
  2012年   12篇
  2011年   19篇
  2010年   10篇
  2009年   28篇
  2008年   19篇
  2007年   30篇
  2006年   19篇
  2005年   28篇
  2004年   12篇
  2003年   14篇
  2002年   12篇
  2001年   19篇
  2000年   10篇
  1999年   11篇
  1998年   14篇
  1997年   7篇
  1996年   9篇
  1995年   9篇
  1994年   5篇
  1993年   8篇
  1990年   3篇
  1989年   2篇
  1986年   1篇
  1984年   3篇
  1979年   1篇
  1957年   1篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
401.
The construction of C 2 Pythagorean-hodograph (PH) quintic spline curves that interpolate a sequence of points p 0,...,p N and satisfy prescribed end conditions incurs a tridiagonal system of N quadratic equations in N complex unknowns. Albrecht and Farouki [1] invoke the homotopy method to compute all 2 N+k solutions to this system, among which there is a unique good PH spline that is free of undesired loops and extreme curvature variations (k{–1,0,+1} depends on the adopted end conditions). However, the homotopy method becomes prohibitively expensive when N10, and efficient methods to construct the good spline only are desirable. The use of iterative solution methods is described herein, with starting approximations derived from ordinary C 2 cubic splines. The system Jacobian satisfies a global Lipschitz condition in C N , yielding a simple closed-form expression of the Kantorovich condition for convergence of Newton–Raphson iterations, that can be evaluated with O(N 2) cost. These methods are also generalized to the case of non-uniform knots.  相似文献   
402.
Abstract

Proposed by Tibshirani, the least absolute shrinkage and selection operator (LASSO) estimates a vector of regression coefficients by minimizing the residual sum of squares subject to a constraint on the l 1-norm of the coefficient vector. The LASSO estimator typically has one or more zero elements and thus shares characteristics of both shrinkage estimation and variable selection. In this article we treat the LASSO as a convex programming problem and derive its dual. Consideration of the primal and dual problems together leads to important new insights into the characteristics of the LASSO estimator and to an improved method for estimating its covariance matrix. Using these results we also develop an efficient algorithm for computing LASSO estimates which is usable even in cases where the number of regressors exceeds the number of observations. An S-Plus library based on this algorithm is available from StatLib.  相似文献   
403.
Abstract

Logspline density estimation is developed for data that may be right censored, left censored, or interval censored. A fully automatic method, which involves the maximum likelihood method and may involve stepwise knot deletion and either the Akaike information criterion (AIC) or Bayesian information criterion (BIC), is used to determine the estimate. In solving the maximum likelihood equations, the Newton–Raphson method is augmented by occasional searches in the direction of steepest ascent. Also, a user interface based on S is described for obtaining estimates of the density function, distribution function, and quantile function and for generating a random sample from the fitted distribution.  相似文献   
404.
Frailty models extend proportional hazards models to multivariate survival data. Hierarchical-likelihood provides a simple unified framework for various random effect models such as hierarchical generalized linear models, frailty models, and mixed linear models with censoring. Wereview the hierarchical-likelihood estimation methods for frailty models. Hierarchical-likelihood for frailty models can be expressed as that for Poisson hierarchical generalized linear models. Frailty models can thus be fitted using Poisson hierarchical generalized linear models. Properties of the new methodology are demonstrated by simulation. The new method reduces the bias of maximum likelihood and penalized likelihood estimates.  相似文献   
405.
We develop algorithms for performing semiparametric regression analysis in real time, with data processed as it is collected and made immediately available via modern telecommunications technologies. Our definition of semiparametric regression is quite broad and includes, as special cases, generalized linear mixed models, generalized additive models, geostatistical models, wavelet nonparametric regression models and their various combinations. Fast updating of regression fits is achieved by couching semiparametric regression into a Bayesian hierarchical model or, equivalently, graphical model framework and employing online mean field variational ideas. An Internet site attached to this article, realtime-semiparametric-regression.net, illustrates the methodology for continually arriving stock market, real estate, and airline data. Flexible real-time analyses based on increasingly ubiquitous streaming data sources stand to benefit. This article has online supplementary material.  相似文献   
406.
This paper is concerned with the construction and the analysis of Gauss quadrature formulas for computing integrals of (smooth) functions against refinable functions and wavelets. The main goal of this paper is to develop rigorous error estimates for these formulas. For the univariate setting, we derive asymptotic error bounds for a huge class of weight functions including spline functions. We also discuss multivariate quadrature rules and present error estimates for specific nonseparable refinable functions, i.e., for some special box splines.  相似文献   
407.
We propose two linearly convergent descent methods for finding a minimizer of a convex quadratic spline and establish global error estimates for the iterates. One application of such descent methods is to solve convex quadratic programs, since they can be reformulated as problems of unconstrained minimization of convex quadratic splines. In particular, we derive several new linearly convergent algorthms for solving convex quadratic programs. These algorithms could be classified as row-action methods, matrix-splitting methods, and Newton-type methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号