首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2696篇
  免费   394篇
  国内免费   319篇
化学   1227篇
晶体学   7篇
力学   246篇
综合类   10篇
数学   994篇
物理学   925篇
  2024年   17篇
  2023年   59篇
  2022年   114篇
  2021年   116篇
  2020年   157篇
  2019年   132篇
  2018年   116篇
  2017年   100篇
  2016年   129篇
  2015年   124篇
  2014年   191篇
  2013年   213篇
  2012年   166篇
  2011年   170篇
  2010年   120篇
  2009年   158篇
  2008年   159篇
  2007年   154篇
  2006年   140篇
  2005年   85篇
  2004年   94篇
  2003年   58篇
  2002年   74篇
  2001年   71篇
  2000年   51篇
  1999年   56篇
  1998年   58篇
  1997年   53篇
  1996年   48篇
  1995年   34篇
  1994年   33篇
  1993年   29篇
  1992年   22篇
  1991年   17篇
  1990年   13篇
  1989年   12篇
  1988年   9篇
  1987年   8篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1983年   6篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
排序方式: 共有3409条查询结果,搜索用时 15 毫秒
61.
Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever‐increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh‐based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3]2+. Based on these results, we could successfully photosynthesize a model chiral compound (L ‐glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors.  相似文献   
62.
Extremely slow and extremely fast new water oxidation catalysts based on the Ru–bda (bda=2,2′‐bipyridine‐6,6′‐dicarboxylate) systems are reported with turnover frequencies in the range of 1 and 900 cycles s?1, respectively. Detailed analyses of the main factors involved in the water oxidation reaction have been carried out and are based on a combination of reactivity tests, electrochemical experiments, and DFT calculations. These analyses give a convergent interpretation that generates a solid understanding of the main factors involved in the water oxidation reaction, which in turn allows the design of catalysts with very low energy barriers in all the steps involved in the water oxidation catalytic cycle. We show that for this type of system π‐stacking interactions are the key factors that influence reactivity and by adequately controlling them we can generate exceptionally fast water oxidation catalysts.  相似文献   
63.
A stable visible‐light‐driven photocatalyst (λ≥450 nm) for water oxidation is reported. Rhodium substitution into the pyrochlore Y2Ti2O7 is demonstrated by monitoring Vegard′s law evolution of the unit‐cell parameters with changing rhodium content, to a maximum content of 3 % dopant. Substitution renders the solid solutions visible‐light active. The overall rate of oxygen evolution is comparable to WO3 but with superior light‐harvesting and surface‐area‐normalized turnover rates, making Y2Ti1.94Rh0.06O7 an excellent candidate for use in a Z‐scheme water‐splitting system.  相似文献   
64.
Developing highly efficient and low-cost photocatalysts for overall water splitting has long been a pursuit for converting solar power into clean hydrogen energy. Herein, we demonstrate that a nonstoichiometric nickel–cobalt double hydroxide can achieve overall water splitting by itself upon solar light irradiation, avoiding the consumption of noble-metal co-catalysts. We employed an intensive laser to ablate a NiCo alloy target immersed in alkaline solution, and produced so-called L-NiCo nanosheets with a nonstoichiometric composition and O2−/Co3+ ions exposed on the surface. The nonstoichiometric composition broadens the band gap, while O2− and Co3+ ions boost hydrogen and oxygen evolution, respectively. As such, the photocatalyst achieves a H2 evolution rate of 1.7 μmol h−1 under AM 1.5G sunlight irradiation and an apparent quantum yield (AQE) of 1.38 % at 380 nm.  相似文献   
65.
The oxygen vacancies of defective iron–cobalt oxide (FeCoOx-Vo) nanosheets are modified by the homogeneously distributed sulfur (S) atoms. S atoms can not only effectively stabilize oxygen vacancies (Vo), but also form the Co−S coordination with Co active site in the Vo, which can modulate the electronic structure of the active site, enabling FeCoOx-Vo-S to exhibit much superior OER activity. FeCoOx-Vo-S exhibits a mass activity of 2440.0 A g−1 at 1.5 V vs. RHE in 1.0 m KOH, 25.4 times higher than that of RuO2. The Tafel slope is as low as 21.0 mV dec−1, indicative of its excellent charge transfer rate. When FeCoOx-Vo-S (anode catalyst) is paired with the defective CoP3/Ni2P (cathode catalyst) for overall water splitting, current densities of as high as 249.0 mA cm−2 and 406.0 mA cm−2 at a cell voltage of 2.0 V and 2.3 V, respectively, can be achieved.  相似文献   
66.
A facile photoetching approach is described that alleviates the negative effects from bulk defects by confining the oxygen vacancy (Ovac) at the surface of BiVO4 photoanode, by 10‐minute photoetching. This strategy could induce enriched Ovac at the surface of BiVO4, which avoids the formation of excessive bulk defects. A mechanism is proposed to explain the enhanced charge separation at the BiVO4 /electrolyte interface, which is supported by density functional theory (DFT) calculations. The optimized BiVO4 with enriched surface Ovac presents the highest photocurrent among undoped BiVO4 photoanodes. Upon loading FeOOH/NiOOH cocatalysts, photoetched BiVO4 photoanode reaches a considerable water oxidation photocurrent of 3.0 mA cm?2 at 0.6 V vs. reversible hydrogen electrode. An unbiased solar‐to‐hydrogen conversion efficiency of 3.5 % is realized by this BiVO4 photoanode and a Si photocathode under 1 sun illumination.  相似文献   
67.
Transition‐metal phosphides (TMP) prepared by atomic layer deposition (ALD) are reported for the first time. Ultrathin Co‐P films were deposited by using PH3 plasma as the phosphorus source and an extra H2 plasma step to remove excess P in the growing films. The optimized ALD process proceeded by self‐limited layer‐by‐layer growth, and the deposited Co‐P films were highly pure and smooth. The Co‐P films deposited via ALD exhibited better electrochemical and photoelectrochemical hydrogen evolution reaction (HER) activities than similar Co‐P films prepared by the traditional post‐phosphorization method. Moreover, the deposition of ultrathin Co‐P films on periodic trenches was demonstrated, which highlights the broad and promising potential application of this ALD process for a conformal coating of TMP films on complex three‐dimensional (3D) architectures.  相似文献   
68.
Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.  相似文献   
69.
70.
Zhang  Shicong  Ye  Haonan  Ding  Haoran  Yu  Fengtao  Hua  Jianli 《中国科学:化学(英文版)》2020,63(2):228-236
Dye-sensitized photoelectrochemical tandem cells have shown the promise for light driven hydrogen production from water owing to the low cost,wide absorption spectra in the visible region and ease to process of their constitutive photoelectrode materials.However,most photo-driven water splitting photoelectrochemical cells driven by organic dye sensitized solar cells exhibit unsatisfactory hydrogen evolution rate,primarily attributed to their poor light capturing ability and low photocurrent performance.Here we present the construction of a tandem system consisting of an organic blue-colored S5 sensitizer-based dyesensitized photoelectrochemical cell(DSPEC) wired in series with three spectral-complemental dyes BTA-2,APP-3 and APP-1 sensitizers-based dye-sensitized solar cell(DSC),respectively.The two spectral-complemental chromophores were used in DSC and DSPEC to ensure that the full solar spectrum could be absorbed as much as possible.The results showed that the photocurrent of tandem device was closely related to the open-circuit voltage(Voc) of sensitized DSC,in which the tandem configuration consisting of S5 based DSPEC and BTA-2 based DSC gave the best photocurrent.On this basis,tandem device with the only light energy and no external applied electrical bias was further constructed of BTA-2 based 2-junction DSC and S5 based DSPEC and obtained a photocurrent of 500 μA cm-2 for hydrogen generation.Furthermore,I-/I3-was used as a redox couple between dye regeneration and O2 production on the surface of Pt-IrO2/WO3.The strategy opens up the application of pure organic dyes in DSC/DSPEC tandem device.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号