首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4877篇
  免费   161篇
  国内免费   101篇
化学   240篇
晶体学   3篇
力学   217篇
综合类   28篇
数学   4154篇
物理学   497篇
  2024年   4篇
  2023年   57篇
  2022年   73篇
  2021年   74篇
  2020年   99篇
  2019年   78篇
  2018年   69篇
  2017年   62篇
  2016年   93篇
  2015年   87篇
  2014年   161篇
  2013年   316篇
  2012年   219篇
  2011年   221篇
  2010年   225篇
  2009年   328篇
  2008年   366篇
  2007年   363篇
  2006年   262篇
  2005年   206篇
  2004年   172篇
  2003年   161篇
  2002年   139篇
  2001年   116篇
  2000年   112篇
  1999年   111篇
  1998年   114篇
  1997年   98篇
  1996年   87篇
  1995年   71篇
  1994年   69篇
  1993年   63篇
  1992年   46篇
  1991年   43篇
  1990年   37篇
  1989年   28篇
  1988年   32篇
  1987年   20篇
  1986年   34篇
  1985年   38篇
  1984年   29篇
  1983年   11篇
  1982年   23篇
  1981年   20篇
  1980年   28篇
  1979年   19篇
  1978年   18篇
  1977年   21篇
  1976年   11篇
  1974年   2篇
排序方式: 共有5139条查询结果,搜索用时 15 毫秒
101.
Protein fold recognition   总被引:4,自引:0,他引:4  
Summary An important, yet seemingly unattainable, goal in structural molecular biology is to be able to predict the native three-dimensional structure of a protein entirely from its amino acid sequence. Prediction methods based on rigorous energy calculations have not yet been successful, and best results have been obtained from homology modelling and statistical secondary structure prediction. Homology modelling is limited to cases where significant sequence similarity is shared between a protein of known structure and the unknown. Secondary structure prediction methods are not only unreliable, but also do not offer any obvious route to the full tertiary structure. Recently, methods have been developed whereby entire protein folds are recognized from sequence, even where little or no sequence similarity is shared between the proteins under consideration. In this paper we review the current methods, including our own, and in particular offer a historical background to their development. In addition, we also discuss the future of these methods and outline the developments under investigation in our laboratory.  相似文献   
102.
建立了一个登革热在蚊子和人之间传播的模型,引入了Wolbachia、自我保护和杀虫剂三种控制措施,分别从常数控制和时变控制两个方面进行探讨。首先,分析了常数控制对模型基本再生数的影响,研究发现:Wolbachia有助于减小基本再生数,且基本再生数与自我保护和杀虫剂呈负相关。其次,以使得感染数最少且实施成本最低为目标,使用Pontryagin极值原理讨论最优控制。最后,通过数值模拟展示了最优控制的效果。  相似文献   
103.
The aim of this paper is to formulate several questions related to distributionally robust Stochastic Optimal Control modeling. As an example the distributionally robust counterpart of the classical inventory model is discussed in details. Finite and infinite horizon stationary settings are considered.  相似文献   
104.
本文讨论Schr?dinger方程的连续时空有限元方法,通过引入相应的时空投影算子,利用实部虚部分离技巧,得到了变量u在时间节点处的L2范数,以及u和ut的全局L2(H1)和L2(L2)范数意义下的最优误差估计结果.该文的结论对进一步探索和设计Schr?dinger方程的数值算法是有益的.  相似文献   
105.
106.
In this paper we present and study a new algorithm for the Maximum Satisfiability (Max Sat) problem. The algorithm is based on the Method of Conditional Expectations (MOCE, also known as Johnson’s Algorithm) and applies a greedy variable ordering to MOCE. Thus, we name it Greedy Order MOCE (GO-MOCE). We also suggest a combination of GO-MOCE with CCLS, a state-of-the-art solver. We refer to this combined solver as GO-MOCE-CCLS.We conduct a comprehensive comparative evaluation of GO-MOCE versus MOCE on random instances and on public competition benchmark instances. We show that GO-MOCE reduces the number of unsatisfied clauses by tens of percents, while keeping the runtime almost the same. The worst case time complexity of GO-MOCE is linear. We also show that GO-MOCE-CCLS improves on CCLS consistently by up to about 80%.We study the asymptotic performance of GO-MOCE. To this end, we introduce three measures for evaluating the asymptotic performance of algorithms for Max Sat. We point out to further possible improvements of GO-MOCE, based on an empirical study of the main quantities managed by GO-MOCE during its execution.  相似文献   
107.
General Stochastic Hybrid System (SHS) are characterised by Stochastic Differential Equations (SDEs) with discontinuities and Poisson jump processes. SHS are useful in model based design of Cyber-Physical System (CPS) controllers under uncertainty. Industry standard model based design tools such as Simulink/Stateflow® are inefficient when simulating, testing, and validating SHS, because of dependence on fixed-step Euler–Maruyama (EM) integration and discontinuity detection. We present a novel efficient adaptive step-size simulation/integration technique for general SHSs modelled as a network of Stochastic Hybrid Automatons (SHAs). We propose a simulation algorithm where each SHA in the network executes synchronously with the other, at an integration step-size computed using adaptive step-size integration. Ito’ multi-dimensional lemma and the inverse sampling theorem are leveraged to compute the integration step-size by making the SDEs and Poisson jump rate integration dependent upon discontinuities. Existence and convergence analysis along with experimental results show that the proposed technique is substantially faster than Simulink/Stateflow®when simulating general SHSs.  相似文献   
108.
We are given a complete and loop-free digraphG=(V, A), whereV={1,...,n} is the vertex set,A={(i, j) :i, j V} the arc set, andr V is a distinguishedroot vertex. For each arc (i, j) A, letc ij be the associatedcost, and for each vertexi, letq i 0 be the associateddemand (withq r =0). Moreover, a nonnegativebranch capacity, Q, is defined.A Capacitated Shortest Spanning Arborescence rooted at r (CSSA r ) is a minimum cost partial digraph such that: (i) each vertexj r has exactly one entering arc; (ii) for each vertexj r, a path fromr toj exists; (iii) for each branch leaving vertexr, the total demand of the vertices does not exceed the branch capacity,Q. A variant of theCSSA r problem (calledD-CSSA r ) arises when the out-degree of the root vertex is constrained to be equal to a given valueD. These problems are strongly NP-hard, and find practical applications in routing and network design. We describe a new Lagrangian lower bound forCSSA r andD-CSSA r problems, strengthened in a cutting plane fashion by iteratively adding violated constraints to the Lagrangian problem. We also present a new lower bound based on projection leading to the solution of min-cost flow problems. The two lower bounds are then combined so as to obtain an overall additive lower bounding procedure. The additive procedure is then imbedded in a branch-and-bound algorithm whose performance is enhanced by means of reduction procedures, dominance criteria, feasibility checks and upper bounding. Computational tests on asymmetric and symmetric instances from the literature, involving up to 200 vertices, are given, showing the effectiveness of the proposed approach.  相似文献   
109.
Different classes of on-line algorithms are developed and analyzed for the solution of {0, 1} and relaxed stochastic knapsack problems, in which both profit and size coefficients are random variables. In particular, a linear time on-line algorithm is proposed for which the expected difference between the optimum and the approximate solution value isO(log3/2 n). An(1) lower bound on the expected difference between the optimum and the solution found by any on-line algorithm is also shown to hold.Corresponding author.Partially supported by the Basic Research Action of the European Communities under Contract 3075 (Alcom).Partially supported by research project Models and Algorithms for Optimization of the Italian Ministry of University and Scientific and Technological Research (MURST 40%).  相似文献   
110.
A randomized algorithm for finding a hyperplane separating two finite point sets in the Euclidean space d and a randomized algorithm for solving linearly constrained general convex quadratic problems are proposed. The expected running time of the separating algorithm isO(dd! (m + n)), wherem andn are cardinalities of sets to be separated. The expected running time of the algorithm for solving quadratic problems isO(dd! s) wheres is the number of inequality constraints. These algorithms are based on the ideas of Seidel's linear programming algorithm [6]. They are closely related to algorithms of [8], [2], and [9] and belong to an abstract class of algorithms investigated in [1]. The algorithm for solving quadratic problems has some features of the one proposed in [7].This research was done when the author was supported by the Alexander von Humboldt Foundation, Germany.On leave from the Institute of Mathematics and Mechanics, Ural Department of the Russian Academy of Sciences, 620219 Ekaterinburg, S. Kovalevskaya str. 16, Russia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号