首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22957篇
  免费   1294篇
  国内免费   954篇
化学   820篇
晶体学   58篇
力学   3047篇
综合类   116篇
数学   16183篇
物理学   4981篇
  2025年   46篇
  2024年   272篇
  2023年   278篇
  2022年   211篇
  2021年   311篇
  2020年   590篇
  2019年   578篇
  2018年   570篇
  2017年   569篇
  2016年   563篇
  2015年   525篇
  2014年   1010篇
  2013年   2208篇
  2012年   987篇
  2011年   1378篇
  2010年   1115篇
  2009年   1445篇
  2008年   1474篇
  2007年   1400篇
  2006年   1161篇
  2005年   877篇
  2004年   810篇
  2003年   781篇
  2002年   751篇
  2001年   617篇
  2000年   645篇
  1999年   574篇
  1998年   483篇
  1997年   461篇
  1996年   355篇
  1995年   278篇
  1994年   241篇
  1993年   188篇
  1992年   142篇
  1991年   114篇
  1990年   110篇
  1989年   80篇
  1988年   61篇
  1987年   67篇
  1986年   64篇
  1985年   88篇
  1984年   124篇
  1983年   68篇
  1982年   82篇
  1981年   83篇
  1980年   84篇
  1979年   82篇
  1978年   69篇
  1977年   53篇
  1976年   34篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
31.
The intrinsic localization of electrostatic wave energies in quantum semiconductor plasmas can be described by solitary pulses. The collision properties of these pulses are investigated. In the present study, the fundamental model includes the quantum term, degenerate pressure of the plasma species, and the electron/hole exchange–correlation effects. In cylindrical geometry, using the extended Poincaré–Lighthill–Kuo (PLK) method, the Korteweg–de Vries (KdV) equations and the analytical phase shifts after the collision of two soliton rings are derived. Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. In addition, the degenerate pressure terms of electrons and holes have strong impact on the phase shift. The present theory may be useful to analyze the collision of localized coherent electrostatic waves in quantum semiconductor plasmas.  相似文献   
32.
In this study, both the intersubband optical absorption coefficients and the refractive index changes as dependent on the magnetic field are calculated in square and graded quantum wells. Our results show that the position and the magnitude of the linear and total absorption coefficients and refractive index changes depend on the magnetic field strength and the shape of potential. The incident optical intensity has a great effect on the total absorption and refractive index changes.  相似文献   
33.
We present developments in dynamic magnetic resonance imaging that allow internal structural muscle markers to be followed during heating. This monitoring is based on quantitative characterization of the experimental conditions and their temperature time course. A nonlinear image registration technique was optimized and applied to consecutively acquired images to measure the deformation fields in the muscle. A model coupling local deformation and temperature was obtained, which for the first time takes into account the variations of deformation and temperature in the sample. This modeling opens the way to a better understanding of the mechanisms responsible for mass loss and degradation of the textural properties of muscle during heating.  相似文献   
34.
In this letter, we study discretized mKdV lattice equation by using a new generalized ansatz. As a result,many explicit rational exact solutions, including some new solitary wave solutions, are obtained by symbolic computation code Maple.  相似文献   
35.
We study weno(2r − 1) reconstruction [D.S. Balsara, C.W. Shu, Monotonicity prserving weno schemes with increasingly high-order of accuracy, J. Comput. Phys. 160 (2000) 405–452], with the mapping (wenom) procedure of the nonlinear weights [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted-essentially-non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542–567], which we extend up to weno17 (r=9)(r=9). We find by numerical experiment that these procedures are essentially nonoscillatory without any stringent cfl limitation (cfl∈[0.8,1])(cfl[0.8,1]), for scalar hyperbolic problems (both linear and scalar conservation laws), provided that the exponent pβpβ in the definition of the Jiang–Shu [G.S. Jiang, C.W. Shu, Efficient implementation of weighted eno schemes, J. Comput. Phys. 126 (1996) 202–228] nonlinear weights be taken as pβ=rpβ=r, as originally proposed by Liu et al. [X.D. Liu, S. Osher, T. Chan, Weighted essentially nonoscillatory schemes, J. Comput. Phys. 115 (1994) 200–212], instead of pβ=2pβ=2 (this is valid both for weno and wenom reconstructions), although the optimal value of the exponent is probably pβ(r)∈[2,r]pβ(r)[2,r]. Then, we apply the family of very-high-order wenompβ=rwenompβ=r reconstructions to the Euler equations of gasdynamics, by combining local characteristic decomposition [A. Harten, B. Engquist, S. Osher, S.R. Chakravarthy, Uniformly high-order accurate essentially nonoscillatory schemes iii, J. Comput. Phys. 71 (1987) 231–303], with recursive-order-reduction (ror) aiming at aleviating the problems induced by the nonlinear interactions of characteristic fields within the stencil. The proposed ror algorithm, which generalizes the algorithm of Titarev and Toro [V.A. Titarev, E.F. Toro, Finite-volume weno schemes for 3-D conservation laws, J. Comput. Phys. 201 (2004) 238–260], is free of adjustable parameters, and the corresponding rorwenompβ=rrorwenompβ=r schemes are essentially nonoscillatory, as Δx→0Δx0, up to r=9r=9, for all of the test-cases studied. Finally, the unsplit linewise 2-D extension of the schemes is evaluated for several test-cases.  相似文献   
36.
The magnetic, transport and structural properties are studied for La0.83Sr0.17MnO3 and La0.82Sr0.18CoO3 single crystals with nearly the same doping and the metallic ground state. Their comparisons have shown that ferromagnetic clusters originate in the paramagnetic matrix below Т?>TC in both samples and exhibit similar properties. This suggests the possible universality of such phenomena in doped mixed-valence oxides of transition metals with the perovskite-type structure. The cluster density increases on cooling and plays an important role on the physical properties of these systems. The differences in cluster evolutions and scenarios of their insulator–metal transitions are related to different magnetic behaviors of the matrixes in these crystals that is mainly due to distinct spin states of the Mn3+ and Co3+ ions.  相似文献   
37.
We study the classical dynamics of the RbCs molecule in the presence of a static electric field. Under the Born–Oppenheimer approximation, we perform a rovibrational investigation which includes the interaction of the field with the molecular polarizability. The stability of the equilibrium points and the phase space structure of the system are explored in detail. We find that, for strong electric fields or for energies close to the dissociation threshold, the molecular polarizability causes relevant effects on the system dynamics.  相似文献   
38.
The dynamics of a driven stadium-like billiard is considered using the formalism of discrete mappings. The model presents a resonant velocity that depends on the rotation number around fixed points and external boundary perturbation which plays an important separation rule in the model. We show that particles exhibiting Fermi acceleration (initial velocity is above the resonant one) are scaling invariant with respect to the initial velocity and external perturbation. However, initial velocities below the resonant one lead the particles to decelerate therefore unlimited energy growth is not observed. This phenomenon may be interpreted as a specific Maxwell’s Demon which may separate fast and slow billiard particles.  相似文献   
39.
In this paper, we derive the time dependent solution of the effective master equation for the reduced density matrix operator of a two-level atom driven by a strong classical field and damped into a “modelled” reservoir with non-flat density of modes. The effects of different parameters on the atomic inversion, the von Neumann entropy and the entropy squeezing are discussed.  相似文献   
40.
Existing experimental studies of the thermal denaturation of DNA yield sharp steps in the melting curve suggesting that the melting transition is first order. This transition has been theoretically studied since the early sixties, mostly within an approach in which the microscopic configurations of a DNA molecule consist of an alternating sequence of non-interacting bound segments and denaturated loops. Studies of these models neglect the repulsive, self-avoiding, interaction between different loops and segments and have invariably yielded continuous denaturation transitions. In the present study we take into account in an approximate way the excluded-volume interaction between denaturated loops and the rest of the chain. This is done by exploiting recent results on scaling properties of polymer networks of arbitrary topology. We also ignore the heterogeneity of the polymer. We obtain a first-order melting transition in d = 2 dimensions and above, consistent with the experimental results. We also consider within our approach the unzipping transition, which takes place when the two DNA strands are pulled apart by an external force acting on one end. We find that the under equilibrium condition the unzipping transition is also first order. Although the denaturation and unzipping transitions are thermodynamically first order, they do exhibit critical fluctuations in some of their properties. For instance, the loop size distribution decays algebraically at the transition and the length of the denaturated end segment diverges as the transition is approached. We evaluate these critical properties within our approach. Received 21 August 2001 and Received in final form 26 January 2002  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号