首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   6篇
  国内免费   6篇
化学   33篇
力学   120篇
数学   74篇
物理学   47篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   17篇
  2012年   9篇
  2011年   25篇
  2010年   10篇
  2009年   17篇
  2008年   14篇
  2007年   21篇
  2006年   17篇
  2005年   14篇
  2004年   16篇
  2003年   9篇
  2002年   5篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1995年   4篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   1篇
  1981年   1篇
  1969年   1篇
排序方式: 共有274条查询结果,搜索用时 15 毫秒
51.
We derive a thin-film model for viscoelastic liquids under strong slip which obey the stress tensor dynamics of corotational Jeffreys fluids.  相似文献   
52.
We investigate a stochastic evolution equation for the motion of a second grade fluid filling a bounded domain of R2R2. Global existence and uniqueness of strong probabilistic solution is established. In contrast to previous results on this model we show that the sequence of Galerkin approximation converges in mean square to the exact strong probabilistic solution of the problem. We also give two results on the long time behavior of the solution. Mainly we prove that the strong solution of our stochastic model converges exponentially in mean square to the stationary solution of the time-independent second grade fluids equations if the deterministic part of the external force does not depend on time. If the deterministic forcing term explicitly depends on time, then the strong probabilistic solution decays exponentially in mean square.  相似文献   
53.
This paper is concerned with global existence and exponential stability of solutions for a class of full non-Newtonian fluids with large initial data in a bounded domain Ω?(0,1).  相似文献   
54.
Forced convection heat transfer in a non-Newtonian fluid flow inside a pipe whose external surface is subjected to non-axisymmetric heat loads is investigated analytically. Fully developed laminar velocity distributions obtained by a power-law fluid rheology model are used, and viscous dissipation is taken into account. The effect of axial heat conduction is considered negligible. The physical properties are assumed to be constant. We consider that the smooth change in the velocity distribution inside the pipe is piecewise constant. The theoretical analysis of the heat transfer is performed by using an integral transform technique – Vodicka’s method. An important feature of this approach is that it permits an arbitrary distribution of the surrounding medium temperature and an arbitrary velocity distribution of the fluid. This technique is verified by a comparison with the existing results. The effects of the Brinkman number and rheological properties on the distribution of the local Nusselt number are shown.  相似文献   
55.
In microfluidic devices it has been suggested a scheme for enhancing the mixing of two fluids is to use patterned, slip boundary conditions. This has been shown to induce significant transverse flow for Newtonian fluids [S.C. Hendy, M. Jasperse, J. Burnell, Effect of patterned slip on micro- and nanofluidic flows, Phys. Rev. E 72 (2005) 016303]. Here we study the effect of patterned slip on non-Newtonian fluids. Using a power-law model it is shown for shear-thickening fluids patterned slip can induce significant transverse flows comparable in size to those produced for Newtonian fluids. However, for shear-thinning fluids this transverse flow is suppressed. We predict a convenient way to increase the transverse flow for shear-thinning fluids is to use a patterned slip boundary condition coupled to a sinusoidally time-varying pressure gradient. This system is studied using a simple linearized White–Metzner model which has a power-law viscosity function [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, New York, 1987]. In this case it is shown the two variations combine to produce transverse flow, which can be increased by increasing the frequency of the sinusoidal time-dependent fluctuation.  相似文献   
56.
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The non-linear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0<t*<1 and reach the steady-state values for t*≥4.  相似文献   
57.
This paper presents experimental investigations on nitrogen/non-Newtonian fluid two-phase flow in vertical noncircular microchannels, which have square or triangular cross-section with the hydraulic diameters being Dh = 2.5, 2.886 and 0.866 mm, respectively, by visualization method. Three non-Newtonian aqueous solutions with typical rheological properties, i.e., 0.4% carboxymethyl cellulose (CMC), 0.2% polyacrylamide (PAM) and 0.2% xanthan gum (XG) are chosen as the working fluids. The common flow patterns are identified as slug flow, churn flow and annular flow. The dispersed bubble flow is only found in the case with nitrogen/CMC solution two-phase flow in the largest channel. A new flow pattern of nitrogen/PAM solution two-phase flow, named chained bubble/slug flow, is observed in all the test channels. The flow regime maps are also developed and the results show that the rheological properties of the non-Newtonian fluid have remarkable influence on the flow pattern transitions. The geometrical factors of the microchannel such as the cross-section shape and hydraulic diameter of the channel can also affect the flow regime map. Finally, the results obtained in this work are compared with the available flow pattern transitions.  相似文献   
58.
Summary.  Compared to the simple one-component case, the phase behaviour of binary liquid mixtures shows an incredibly rich variety of phenomena. In this contribution we restrict ourselves to so-called binary symmetric mixtures, i.e. where like-particle interactions are equal (Φ11(r) = Φ22(r)), whereas the interactions between unlike fluid particles differ from those of likes ones (Φ11(r) ≠ Φ12(r)). Using both the simple mean spherical approximation and the more sophisticated self-consistent Ornstein-Zernike approximation, we have calculated the structural and thermodynamic properties of such a system and determine phase diagrams, paying particular attention to the critical behaviour (critical and tricritical points, critical end points). We then study the thermodynamic properties of the same binary mixture when it is in thermal equilibrium with a disordered porous matrix which we have realized by a frozen configuration of equally sized particles. We observe – in qualitative agreement with experiment – that already a minute matrix density is able to lead to drastic changes in the phase behaviour of the fluid. We systematically investigate the influence of the external system parameters (due to the matrix properties and the fluid–matrix interactions) and of the internal system parameters (due to the fluid properties) on the phase diagram. Received June 27, 2001. Accepted July 2, 2001  相似文献   
59.
The steady-state flow of a third grade fluid between concentric circular cylinders is considered and entropy generation due to fluid friction and heat transfer in the annular pipe is examined. Depending upon the fluid viscosity, entropy generation in the flow system varies. The third grade fluid is employed to account for the non-Newtonian effect while Vogel model is accommodated for temperature-dependent viscosity. The analysis is based on perturbation technique. The closed form solutions for velocity, temperature and entropy fields are presented. Entropy generation due to fluid friction and heat transfer in the flow system is formulated. The influence of viscosity parameters A and B on the entropy generation number is investigated. It is found that entropy generation number reduces with increasing viscosity parameter A, which is more pronounced in the region close to the annular pipe inner wall and opposite is true for increasing viscosity parameter B.  相似文献   
60.
Soft Matter (Nobel Lecture)   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号