首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2922篇
  免费   225篇
  国内免费   132篇
化学   859篇
晶体学   7篇
力学   436篇
综合类   36篇
数学   1323篇
物理学   618篇
  2024年   7篇
  2023年   25篇
  2022年   64篇
  2021年   57篇
  2020年   69篇
  2019年   70篇
  2018年   53篇
  2017年   78篇
  2016年   122篇
  2015年   86篇
  2014年   146篇
  2013年   256篇
  2012年   133篇
  2011年   181篇
  2010年   142篇
  2009年   184篇
  2008年   189篇
  2007年   207篇
  2006年   145篇
  2005年   130篇
  2004年   132篇
  2003年   105篇
  2002年   88篇
  2001年   81篇
  2000年   60篇
  1999年   51篇
  1998年   58篇
  1997年   34篇
  1996年   53篇
  1995年   39篇
  1994年   29篇
  1993年   25篇
  1992年   30篇
  1991年   17篇
  1990年   16篇
  1989年   10篇
  1988年   8篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1984年   9篇
  1983年   5篇
  1982年   8篇
  1980年   3篇
  1979年   7篇
  1978年   8篇
  1977年   4篇
  1976年   8篇
  1975年   6篇
  1973年   8篇
排序方式: 共有3279条查询结果,搜索用时 13 毫秒
71.
This review presents the evolution of recent flow-based analytical systems, characterized by the use of arrays of sensors as a detection scheme. For the proper processing of the complex responses generated, the systems require the use of advanced chemometric treatment, in which received the term “electronic tongue”. Applications employing the flow injection analysis (FIA) and sequential injection analysis (SIA) are described. Chronologically, the progresses made by different research groups are shown, emphasizing their final applications in real problem solving.  相似文献   
72.
This project consists of two parts. In the first part, a series of test calculations is performed to verify that the integrals involved in the determination of atomic and molecular properties by standard self‐consistent field (SCF) methods can be obtained through Halton, Korobov, or Hammersley quasi‐random integration procedures. Through these calculations, we confirm that all three methods lead to results that meet the levels of precision required for their use in the calculation of properties of small atoms or molecules at least at a Hartree–Fock level. Moreover, we have ensured that the efficiency of quasi‐random integration methods that we have tested is Halton=Korobov>Hammersley?pseudo‐random. We also find that these results are comparable to those yielded by ordinary Monte Carlo (pseudo‐random) integration, with a calculation effort of two orders of smaller magnitude. The second part, which would not have been possible without the integration method previously analyzed, contains a first study of atoms constrained in spherical boxes through SCF calculations with basis functions adapted to the features of the problem: Slater‐type orbitals (STOs) trimmed by multiplying them by a function that yields 1 for 0 < r < (R‐δ), polynomial values for (R‐δ) < r < R and null for r > R, R being the radius of the box and δ a variationally determined interval. As a result, we obtain a equation of state for electrons of small systems, valid just in the limit of low temperatures, but fairly simple. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
73.
Three‐center nuclear attraction integrals over exponential‐type functions are required for ab initio molecular structure calculations and density functional theory (DFT). These integrals occur in many millions of terms, even for small molecules, and they require rapid and accurate numerical evaluation. The use of a basis set of B functions to represent atomic orbitals, combined with the Fourier transform method, led to the development of analytic expressions for these molecular integrals. Unfortunately, the numerical evaluation of the analytic expressions obtained turned out to be extremely difficult due to the presence of two‐dimensional integral representations, involving spherical Bessel integral functions. % The present work concerns the development of an extremely accurate and rapid algorithm for the numerical evaluation of these spherical Bessel integrals. This algorithm, which is based on the nonlinear D transformation and the W algorithm of Sidi, can be computed recursively, allowing the control of the degree of accuracy. Numerical analysis tests were performed to further improve the efficiency of our algorithm. The numerical results section demonstrates the efficiency of this new algorithm for the numerical evaluation of three‐center nuclear attraction integrals. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   
74.
In this study, preparation of novel pH-sensitive N-doped carbon dots (NCDs) using glucose and urea is reported. The prepared NCDs present strong excitation-dependent fluorescence changes towards the pH that is a new behavior from these nanomaterials. By taking advantage of this unique behavior, two separated ratiometric pH sensors using emission spectra of the NCDs for both acidic (pH 2.0 to 8.0) and basic (pH 7.0 to 14.0) ranges of pH are constructed. Additionally, by considering the entire Excitation–Emission Matrix (EEM) of NCDs as analytical signal and using a suitable multivariate calibration method, a broad range of pH from 2.0 to 14.0 was well calibrated. The multivariate calibration method was independent from the concentration of NCDs and resulted in a very low average prediction error of 0.067 pH units. No changes in the predicted pH under UV irradiation (for 3 h) and at high ionic strength (up to 2 M NaCl) indicated the high stability of this pH nanosensor. The practicality of this pH nanosensor for pH determination in real water samples was validated with good accuracy and repeatability.  相似文献   
75.
Principal component analysis (PCA) and other multivariate analysis methods have been used increasingly to analyse and understand depth‐profiles in XPS, AES and SIMS. For large images or three‐dimensional (3D) imaging depth‐profiles, PCA has been difficult to apply until now simply because of the size of the matrices of data involved. In a recent paper, we described two algorithms, random vector 1 (RV1) and random vector 2 (RV2), that improve the speed of PCA and allow datasets of unlimited size, respectively. In this paper, we now apply the RV2 algorithm to perform PCA on full 3D time‐of‐flight SIMS data for the first time without subsampling. The dataset we process in this way is a 128 × 128 pixel depth‐profile of 120 layers, each voxel having a 70 439 value mass spectrum associated with it. This forms over a terabyte of data when uncompressed and took 27 h to process using the RV2 algorithm using a conventional windows desktop personal computer (PC). While full PCA (e.g. using RV2) is to be preferred for final reports or publications, a much more rapid method is needed during analysis sessions to inform decisions on the next analytical step. We have therefore implemented the RV1 algorithm on a PC having a graphical processor unit (GPU) card containing 2880 individual processor cores. This increases the speed of calculation by a factor of around 4.1 compared with what is possible using a fast commercially available desktop PC having central processing units alone, and full PCA is performed in less than 7 s. The size of the dataset that can be processed in this way is limited by the size of the memory on the GPU card. This is typically sufficient for two‐dimensional images but not 3D depth‐profiles without sampling. We have therefore examined efficient sampling schemes that allow a good approximate solution to the PCA problem for large 3D datasets. We find that low‐discrepancy series such as Sobol series sampling gives more rapid convergence than random sampling, and we recommend such methods for routine use. Using the GPU and low‐discrepancy series together, we anticipate that any time‐of‐flight SIMS dataset, of whatever size, can be efficiently and accurately processed into PCA components in a maximum of around 10 s using a commercial PC with a widely available GPU card, although the longer RV2 approach is still to be preferred for the presentation of final results, such as in published papers. Copyright © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd  相似文献   
76.
Recently, we proposed a simple yet efficient method for the computation of a long-range corrected (LC) hybrid scheme [LC-DFT(2Gau)], which uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. This method dramatically reduced the computational time while maintaining the improved features of the LC density functional theory (DFT). Here, we combined an LC hybrid scheme using a two-Gaussian attenuating operator with one-parameter progressive correlation functional and Becke88 exchange functional with varying range-separation parameter values [LC-BOP(2Gau) with various μ values of 0.16, 0.2, 0.25, 0.3, 0.35, 0.4, and 0.42] and demonstrated that LC-BOP(2Gau) reproduces well the thermochemical and frontier orbital energies of LC-BOP. Additionally, we revised the scaling factors of the Gaussian multipole screening scheme for LC-DFT(2Gau) to correspond to the angular momentum of orbitals, which decreased the energy deviations from the energy with the no-screening scheme. © 2018 Wiley Periodicals, Inc.  相似文献   
77.
A powerful and accurate numerical three‐dimensional integration scheme was developed especially for molecular orbital calculations. A multicenter integral is decomposed into the sum of single‐center integrals using nuclear weight functions and calculated using Gaussian quadrature rules. The decomposed single‐center integrands show strong anisotropy. With a careful selection of the Gaussian quadrature rule according to the anisotropy, it is possible to obtain an accuracy of 13 digits with a small number of integration points for the overlap integrals, normalization integrals, and molecular integrals for the hydrogen molecule. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 509–523, 1999  相似文献   
78.
A procedure that rapidly generates an approximate parametric representation of macromolecular surface shapes is described. The parametrization is expressed as an expansion of real spherical harmonic basis functions. The advantage of using a parametric representation is that a pair of surfaces can be matched by using a quasi-Newton algorithm to minimize a suitably chosen objective function. Spherical harmonics are a natural and convenient choice of basis function when the task is one of search in a rotational search space. In particular, rotations of a molecular surface can be simulated by rotating only the harmonic expansion coefficients. This rotational property is applied for the first time to the 3-dimensional molecular similarity problem in which a pair of similar macromolecular surfaces are to be maximally superposed. The method is demonstrated with the superposition of antibody heavy chain variable domains. Special attention is given to computational efficiency. The spherical harmonic expansion coefficients are determined using fast surface sampling and integration schemes based on the tessellation of a regular icosahedron. Low resolution surfaces can be generated and displayed in under 10 s and a pair of surfaces can be maximally superposed in under 3 s on a contemporary workstation. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 383–395, 1999  相似文献   
79.
The aromatic composition of sugar cane spirits and, in general, of alcoholic beverages, is mainly influenced by the ageing process in wood barrels. There are several factors that affect the quality of the final aged product, but the time of the storage in the barrel is perhaps the most important one. Ageing time must therefore be controlled in order to detect counterfeits; however, this parameter is very difficult to control and, at present, there is no analytical method available to determine it. We propose a quantitative method for determining the ageing time of sugar cane spirits in oak barrels by using an electronic nose based on coupling directly a headspace sampler to a mass spectrometer (HS-MS), and multivariate calibration. The method developed is simple and provides, in 5 min, the ageing time of spirits with an accuracy of about 1 month.  相似文献   
80.
A new method has been developed for monitoring the degradation of paintings. Two inorganic pigments (ultramarine blue and red ochre) were blended with linseed oil and spread on canvas. Each canvas was subjected to simulated accelerated ageing in the presence of typical degradation agents (UV radiation and acidic solution). Periodically the painted surfaces were analysed by FT-Raman, to investigate the status of the surface. The data obtained were analysed by principal component analysis (PCA). Finally the Shewhart and cumulative sum control charts based on the relevant principal components (PC) and the so called scores monitoring and residuals tracking (SMART) charts were built. The method based on the use of PC to describe the process was found to enable identification of the presence of relevant modification occurring on the surface of the samples studied.Electronic supplementary material Supplementary material is available for this article at  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号