首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   433篇
  免费   17篇
  国内免费   6篇
化学   384篇
力学   32篇
数学   3篇
物理学   37篇
  2023年   15篇
  2022年   12篇
  2021年   33篇
  2020年   19篇
  2019年   38篇
  2018年   12篇
  2017年   15篇
  2016年   18篇
  2015年   18篇
  2014年   13篇
  2013年   20篇
  2012年   25篇
  2011年   31篇
  2010年   27篇
  2009年   42篇
  2008年   37篇
  2007年   18篇
  2006年   18篇
  2005年   26篇
  2004年   13篇
  2003年   5篇
  1999年   1篇
排序方式: 共有456条查询结果,搜索用时 0 毫秒
71.
《Electrophoresis》2018,39(17):2181-2187
A nanoporous poly‐(styrene sulfonate) (poly‐SS) membrane was developed for fast and selective ion transport in a microfluidic chip. The poly‐SS membrane can be photopolymerized in‐situ at arbitrary location of a microchannel, enabling integrated fluidics design in the microfluidic chip. The membrane is characterized by a low hydraulic resistance and a high surface charge to maximize the electroosmotic flow and charge selectivity. The membrane characteristics were investigated by charge‐selective electropreconcentration method. Experimental results show membranes with various percentages of poly‐SS are able to concentrate anions (fluorescein and TRITC‐labeled BSA). The anion‐selective electropreconcentration process is stable and 26‐times faster than previously reported poly‐AMPS (2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) based system. The electropreconcentration was also demonstrated to depend on the sample valency and buffer concentration.  相似文献   
72.
《Electrophoresis》2018,39(8):1040-1047
Isoelectric focusing (IEF) is a powerful separation method, useful for resolving subtle changes in the isoelectric point of unlabeled proteins. While microfluidic IEF has reduced the separation times from hours in traditional benchtop IEF to minutes, the enclosed devices hinder post‐separation access to the sample for downstream analysis. The two‐layer open IEF device presented here comprises a photopatterned hydrogel lid layer containing the chemistries required for IEF and a thin polyacrylamide bottom layer in which the analytes are separated. The open IEF device produces comparable minimum resolvable difference in isoelectric point and gradient stability to enclosed microfluidic devices while providing post‐separation sample access by simple removal of the lid layer. Further, using simulations, we determine that the material properties and the length of the separation lanes are the primary factors that affect the electric field magnitude in the separation region. Finally, we demonstrate self‐indexed photomasks for alignment‐free fabrication of multi‐domain hydrogels. We leverage this approach to generate arrayed pH gradients with a total of 80 concurrent separation lanes, which to our knowledge is the first demonstration of multiple IEF separations in series addressed by a single pair of electrodes.  相似文献   
73.
We present an approach for the accumulation and filtering of nano- and microparticles in microfluidic devices that is based on the generation of electric traveling waves in the radio-frequency range. Upon application of the electric field via a microelectrode array, complex particle trajectories and particle accumulation are observed in well-defined regions in a microchannel. Through the quantitative mapping of the 3-D flow pattern using two-focus fluorescence cross-correlation spectroscopy, two vortices could be identified as one of the sources of the force field that induces the formation of particle clouds. Dielectrophoretic forces that directly act on the particles are the second source of the force field. A thorough 2-D finite element analysis identifies the electric traveling wave mechanism as the cause for the unexpected flow behavior observed. Based on these findings, strategies are discussed, first, for avoiding the vortices to optimize electrohydrodynamic micropumps and, secondly, for utilizing the vortices in the development of microdevices for efficient particle accumulation, separation, and filtering. Such devices may find numerous biomedical applications when highly diluted nano- and microsuspensions have to be processed.  相似文献   
74.
Dielectrophoresis (DEP), the motion of particles in nonuniform electric fields, is a nondestructive electrokinetic (EK) transport mechanism can be used to concentrate and separate bioparticles. Traditionally, DEP has been performed employing microelectrodes, an approach that is expensive due to the cost of microelectrode fabrication. An alternative is insulator-based DEP (iDEP), an inexpensive method where nonuniform electric fields are created with arrays of insulating structures. This study presents the effects of operating conditions on the dielectrophoretic behavior of polystyrene microparticles under iDEP. Experiments were performed employing microchannels containing insulating structures that worked as insulators. The parameters varied were pH (8-9) and conductivity (25-100 microS/cm) of the bulk medium, and the magnitude of the applied field (200-850 V/cm). Optimal operating conditions in terms of pH and conductivity were obtained, and the microdevice performance was characterized in terms of concentration factor and minimum electric field required (minimum energy consumption). This is the first report on improving iDEP processes when EOF is present. DEP and EOF have been studied extensively, however, this study integrates the effect of suspending medium characteristics on both EK phenomena. These findings will allow improving the performance of iDEP microdevices achieving the highest concentration fold with the lowest energy consumption.  相似文献   
75.
While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.  相似文献   
76.
郭明雨 《高分子科学》2016,34(3):367-377
In this work, we describe a straightforward approach to produce monodisperse Janus and core-shell particles by using organic solvent free single emulsion droplet-based microfluidic device combining with off-chip polymerization. To accomplish this, methyl methacrylate (MMA) was used as both the oil phase and solvent to dissolve a polymerizable PEGbased macromolecular surfactant, instead of traditional surfactant, and the photo-initiator. Janus particles can be easily obtained by off-chip UV polymerization due to polymerization induced phase separation between PEG and the formed poly(methyl methacrylate). At the same time, core-shell particles can also be easily attained by inverting the original collecting tube several times and then exposing to UV light. These results may extend the scope of microfluidic technology and the studies on polymerization induced self-assembly/phase-separation into easy fabrication of various new functional materials.  相似文献   
77.
Carcinoembryonic antigen (CEA) is a wide‐spectrum biomarker. Clinically, we generally use serum sample to detect CEA, which needs to be centrifuged to pretreat the raw blood sample. In this study, we realized direct CEA detection in raw blood samples exploiting microfluidics. The LOD was as low as 10?12 M.  相似文献   
78.
We use direct femtosecond laser writing to integrate optical waveguides into a commercial fused silica capillary electrophoresis chip. High-quality waveguides crossing the microfluidic channels are fabricated and used to optically address, with high spatial selectivity, their content. Fluorescence from the optically excited volume is efficiently collected at a 90° angle by a high numerical aperture fiber, resulting in a highly compact and portable device. To test the platform we performed electrophoresis and detection of a 23-mer oligonucleotide plug. Our approach is quite powerful because it allows the integration of photonic functionalities, by simple post-processing, into commercial LOCs fabricated with standard techniques. Figure Femtosecond laser written waveguides can selectively excite fluorescence in a microfluidic channel of a commercial lab-on-a-chip. A compact scheme for on-chip detection by laser induced fluorescence is applied to capillary electrophoresis of a 23-mer Cy3-labeled oligonucleotide  相似文献   
79.
《Electrophoresis》2018,39(11):1319-1328
Smartphones have become widely recognized as a very interesting detection and controlling tool in microfluidics. They are portable devices with built‐in cameras and internal microprocessors which carry out image processing. In this case, the external computers are not needed and phones can provide fast and accurate results. Moreover, the connectivity of smartphones gives the possibility to share and provide real‐time results when needed, whether in health diagnostics, environmental monitoring, immunoassays or food safety. Undoubtedly, the marriage of smartphones and microfluidics has a brilliant future in building low cost and easily operable systems for analysis in the field, realizing the idea of people's “smartlife”. The aim of this review is to present and summarize the main advantages and disadvantages of the use of smartphones as well as to take a closer look at some novel achievements published during the last couple of years. In the next paragraphs, readers will find specific uses of a combination of smartphones and microfluidics such as water analysis, health analysis (virus and bacteria detection), and measurement of physical properties or smartphone liquid control in polymer devices.  相似文献   
80.
Zhang T  Fang Q  Wang SL  Qin LF  Wang P  Wu ZY  Fang ZL 《Talanta》2005,68(1):19-24
The signal-to-noise level of light emitting diode (LED) fluorimetry using a liquid-core-waveguide (LCW)-based microfluidic capillary electrophoresis system was significantly enhanced using a synchronized dual wavelength modulation (SDWM) approach. A blue LED was used as excitation source and a red LED as reference source for background-noise compensation in a microfluidic capillary electrophoresis (CE) system. A Teflon AF-coated silica capillary served as both the separation channel and LCW for light transfer, and blue and red LEDs were used as excitation and reference sources, respectively, both radially illuminating the detection point of the separation channel. The two LEDs were synchronously modulated at the same frequency, but with 180°-phase shift, alternatingly driven by a same constant current source. The LCW transferred the fluorescence emission, as well as the excitation and reference lights that strayed through the optical system to a photomultiplier tube; a lock-in amplifier demodulated the combined signal, significantly reducing its noise level. To test the system, fluorescein isothiocyanate (FITC)-labeled amino acids were separated by capillary electrophoresis and detected by SDWM and single wavelength modulation, respectively. Five-fold improvement in S/N ratio was achieved by dual wavelength modulation, compared with single wavelength modulation; and over 100-fold improvement in S/N ratio was achieved compared with a similar LCW-CE system reported previously using non-modulated LED excitation. A detection limit (S/N = 3) of 10 nM FITC-labeled arginine was obtained in this work. The effects of modulation frequency on S/N level and on the rejection of noise caused by LED-driver current and detector were also studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号