首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   0篇
数学   73篇
物理学   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2015年   2篇
  2014年   7篇
  2013年   7篇
  2012年   1篇
  2011年   6篇
  2010年   12篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有74条查询结果,搜索用时 189 毫秒
41.
The scheduling problem in a container terminal is characterized by the coordination of different types of equipment. In this paper, we present an integrated model to schedule the equipment. The objective is to minimize the makespan, or the time it takes to serve a given set of ships. The problem is formulated as a Hybrid Flow Shop Scheduling problem with precedence and Blocking constraints (HFSS-B). A tabu search algorithm is proposed to solve this problem. Certain mechanisms are developed and introduced into the algorithm to assure its quality and efficiency. The performance of the tabu search algorithm is analyzed from the computational point of view.  相似文献   
42.
The job shop scheduling problem is considered, and an algorithm based on the global equilibrium search method is proposed for its solution. Computational experiments using well-known benchmark problems are presented. Several new upper bounds for these problems are obtained.Research partially supported by NSF and AirForce grants.  相似文献   
43.
This paper considers the problems of scheduling with the effect of learning on a single-machine under group technology assumption. We propose a new learning model where the job actual processing time is linear combinations of the scheduled position of the job and the sum of the normal processing time of jobs already processed. We show that the makespan minimization problem is polynomially solvable. We also prove that the total completion time minimization problem with the group availability assumption remains polynomially solvable under agreeable conditions.  相似文献   
44.
In many situations, the skills of workers continuously improve when repeating the same or similar tasks. This phenomenon is known as the “learning effect” in the literature. In most studies, the learning phenomenon is implemented by assuming the actual job processing time is a function of its scheduled position [D. Biskup, Single-machine scheduling with learning considerations, Eur. J. Oper. Res. 115 (1999) 173–178]. Recently, a new model is proposed where the actual job processing time depends on the sum of the processing times of jobs already processed [C. Koulamas, G.J. Kyparisis, Single-machine and two-machine flowshop scheduling with general learning functions, Eur. J. Oper. Res. 178 (2007) 402–407]. In this paper, we extend their models in which the actual job processing time not only depends on its scheduled position, but also depends on the sum of the processing times of jobs already processed. We then show that the single-machine makespan and the total completion time problems remain polynomially solvable under the proposed model. In addition, we show that the total weighted completion time has a polynomial optimal solution under certain agreeable solutions.  相似文献   
45.
We study makespan minimization on an m machine flowshop. No idle time is allowed between consecutive operations on each machine. We introduce an efficient (O(n2)) greedy algorithm, which is shown numerically to perform better than a recently published heuristic.  相似文献   
46.
The aim of this paper is to show by counterexamples that Theorems 3–10 and Corollaries 2–5 in Wang et al. [Appl. Math. Model. 34 (2010) 2831–2839] are incorrect.  相似文献   
47.
This paper studies a single machine scheduling problem simultaneously with deteriorating jobs and learning effects. The objectives are to minimize the makespan and the number of tardy jobs, respectively. Two polynomial time algorithms are proposed to solve these problems optimally.  相似文献   
48.
The m-machine no-wait flowshop scheduling problem with the objective of minimizing total completion time subject to the constraint that the makespan value is not greater than a certain value is addressed in this paper. Setup times are considered non-zero values, and thus, setup times are treated as separate from processing times. Several recent algorithms, an insertion algorithm, two genetic algorithms, three simulated annealing algorithms, two cloud theory-based simulated annealing algorithms, and a differential evolution algorithm are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that one of the nine proposed algorithms, one of the simulated annealing algorithms (ISA-2), performs much better than the others under the same computational time. Moreover, the analysis indicates that the algorithm ISA-2 performs significantly better than the earlier existing best algorithm. Specifically, the best performing algorithm, ISA-2, proposed in this paper reduces the error of the existing best algorithm in the literature by at least 90% under the same computational time. All the results have been statistically tested.  相似文献   
49.
The scheduling problem of open shop to minimize makespan with release dates is investigated in this paper. Unlike the usual researches to confirm the conjecture that the tight worst-case performance ratio of the Dense Schedule (DS) is 2 − 1/m, where m is the number of machines, the asymptotic optimality of the DS is proven when the problem scale tends to infinity. Furthermore, an on-line heuristic based on DS, Dynamic Shortest Processing Time-Dense Schedule, is presented to deal with the off-line and on-line versions of this problem. At the end of the paper, an asymptotically optimal lower bound is provided and the results of numerical experiments show the effectiveness of the heuristic.  相似文献   
50.
Choi, B.-C., Yoon, S.-H., Chung, S.-J., 2007. Minimizing maximum completion time in a proportionate flow shop with one machine of different speed. European Journal of Operational Research 176, 964–974 consider the proportionate flow shop with a slow bottleneck machine and propose the SLDR heuristic for it. Choi et al. (2007) derive a data-dependent worst-case ratio bound for the SLDR heuristic which is then bounded by two. In this note, we show that the tight worst-case ratio bound of the SLDR heuristic is 3/2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号