首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
数学   40篇
物理学   1篇
  2020年   3篇
  2019年   1篇
  2017年   2篇
  2016年   8篇
  2015年   11篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  1997年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
We consider a quadratic stochastic intensity model with a Gaussian autoregressive factor, derive explicit formulas for predictive mortality tables and recursive updating formulas are also provided. We also explain how to use appropriately the Kalman filter to estimate the parameters of the model and to approximate the values of the underlying factor. This methodology is applied to French human mortality tables.  相似文献   
12.
In recent years, a market for mortality derivatives began developing as a way to handle systematic mortality risk, which is inherent in life insurance and annuity contracts. Systematic mortality risk is due to the uncertain development of future mortality intensities, or hazard rates. In this paper, we develop a theory for pricing pure endowments when hedging with a mortality forward is allowed. The hazard rate associated with the pure endowment and the reference hazard rate for the mortality forward are correlated and are modeled by diffusion processes. We price the pure endowment by assuming that the issuing company hedges its contract with the mortality forward and requires compensation for the unhedgeable part of the mortality risk in the form of a pre-specified instantaneous Sharpe ratio. The major result of this paper is that the value per contract solves a linear partial differential equation as the number of contracts approaches infinity. One can represent the limiting price as an expectation under an equivalent martingale measure. Another important result is that hedging with the mortality forward may raise or lower the price of this pure endowment comparing to its price without hedging, as determined in Bayraktar et al. (2009). The market price of the reference mortality risk and the correlation between the two portfolios jointly determine the cost of hedging. We demonstrate our results using numerical examples.  相似文献   
13.
We introduce a model for the mortality rates of multiple populations. To build the proposed model we investigate to what extent a common age effect can be found among the mortality experiences of several countries and use a common principal component analysis to estimate a common age effect in an age–period model for multiple populations. The fit of the proposed model is then compared to age–period models fitted to each country individually, and to the fit of the model proposed by Li and Lee (2005).Although we do not consider stochastic mortality projections in this paper, we argue that the proposed common age effect model can be extended to a stochastic mortality model for multiple populations, which allows to generate mortality scenarios simultaneously for all considered populations. This is particularly relevant when mortality derivatives are used to hedge the longevity risk in an annuity portfolio as this often means that the underlying population for the derivatives is not the same as the population in the annuity portfolio.  相似文献   
14.
Reverse mortgages provide an alternative source of funding for retirement income and health care costs. The two main risks that reverse mortgage providers face are house price risk and longevity risk. Recent real estate literature has shown that the idiosyncratic component of house price risk is large. We analyse the combined impact of house price risk and longevity risk on the pricing and risk profile of reverse mortgage loans in a stochastic multi-period model. The model incorporates a new hybrid hedonic–repeat-sales pricing model for houses with specific characteristics, as well as a stochastic mortality model for mortality improvements along the cohort direction (the Wills–Sherris model). Our results show that pricing based on an aggregate house price index does not accurately assess the risks underwritten by reverse mortgage lenders, and that failing to take into account cohort trends in mortality improvements substantially underestimates the longevity risk involved in reverse mortgage loans.  相似文献   
15.
In the last decade a vast literature on stochastic mortality models has been developed. However, these models are often not directly applicable to insurance portfolios because:
(a) For insurers and pension funds it is more relevant to model mortality rates measured in insured amounts instead of measured in the number of policies.
(b) Often there is not enough insurance portfolio specific mortality data available to fit such stochastic mortality models reliably.
Therefore, in this paper a stochastic model is proposed for portfolio specific mortality experience. Combining this stochastic process with a stochastic country population mortality process leads to stochastic portfolio specific mortality rates, measured in insured amounts. The proposed stochastic process is applied to two insurance portfolios, and the impact on the Value at Risk for longevity risk is quantified. Furthermore, the model can be used to quantify the basis risk that remains when hedging portfolio specific mortality risk with instruments of which the payoff depends on population mortality rates.  相似文献   
16.
Often in actuarial practice, mortality projections are obtained by letting age-specific death rates decline exponentially at their own rate. Many life tables used for annuity pricing are built in this way. The present paper adopts this point of view and proposes a simple and powerful mortality projection model in line with this elementary approach, based on the recently studied mortality improvement rates. Two main applications are considered. First, as most reference life tables produced by regulators are deterministic by nature, they can be made stochastic by superposing random departures from the assumed age-specific trend, with a volatility calibrated on market or portfolio data. This allows the actuary to account for the systematic longevity risk in solvency calculations. Second, the model can be fitted to historical data and used to produce longevity forecasts. A number of conservative and tractable approximations are derived to provide the actuary with reasonably accurate approximations for various relevant quantities, available at limited computational cost. Besides applications to stochastic mortality projection models, we also derive useful properties involving supermodular, directionally convex and stop-loss orders.  相似文献   
17.
The previous attempts to launch liquid and standardized longevity derivatives in the market failed because banks do not seem to be ready to take longevity risk. Therefore, instead of trying to transfer longevity risk to investors, it could be interesting for financial institutions to propose interest rate hedges adapted to longevity portfolios, in the spirit of liability driven investments. In this paper, we introduce a new structured financial product: the so-called Longevity Nominal Chooser Swaption. Thanks to such a contract, insurers could keep pure longevity risk and transfer to financial markets a great part of interest rate risk underlying annuity portfolios.We use a population dynamics longevity model and a classical two-factor interest rate model to price this product. Numerical results show that the option offered to the insurer (in terms of choice of nominal) is not too expensive in many real-world cases. We also discuss the pros and the cons of the product and of our methodology.  相似文献   
18.
We solve the consumption/investment problem of an agent facing a stochastic mortality intensity. The investment set includes a longevity-linked asset, as a derivative on the force of mortality. In a complete and frictionless market, we derive a closed form solution when the agent has Hyperbolic Absolute Risk Aversion preferences and a fixed financial horizon. Our calibrated numerical analysis on US data shows that individuals optimally invest a large fraction of their wealth in longevity-linked assets in the pre-retirement phase, because of their need to hedge against stochastic fluctuations in their remaining life-time at retirement.  相似文献   
19.
We introduce a new pension product that offers retirees the opportunity for a lifelong income and a bequest for their estate. Based on a tontine mechanism, the product divides pension savings between a tontine account and a bequest account. The tontine account is given up to a tontine pool upon death while the bequest account value is paid to the retiree’s estate. The values of these two accounts are continuously re-balanced to the same proportion, which is the key feature of our new product.Our main research question about the new product is what proportion of pension savings should a retiree allocate to the tontine account. Under a power utility function, we show that more risk averse retirees allocate a fairly stable proportion of their pension savings to the tontine account, regardless of the strength of their bequest motive. The proportion declines as the retiree becomes less risk averse for a while. However, for the least risk averse retirees, a high proportion of their pension savings is optimally allocated to the tontine account. This surprising result is explained by the least risk averse retirees seeking the potentially high value of the bequest account at very old ages.  相似文献   
20.
This paper develops a computational framework for inverting Gompertz–Makeham mortality hazard rates, consistent with compensation laws of mortality for heterogeneous populations, to define a longevity-risk-adjusted global (L-RaG) age. To illustrate its salience and possible applications, the paper calibrates and presents L-RaG values using country data from the Human Mortality Database (HMD). Among other things, the author demonstrates that when properly benchmarked, the longevity-risk-adjusted global age of a 55-year-old Swedish male is 48, whereas a 55-year-old Russian male is closer in age to 67. The paper also discusses the connection between the proposed L-RaG age and the related concept of Biological age, from the medical and gerontology literature. Practically speaking, in a world of growing mortality heterogeneity, the L-RaG age could be used for pension and retirement policy. In the language of behavioral finance and economics, a salient metric that adjusts chronological age for longevity risk might help capture the public’s attention, educate them about lifetime uncertainty and induce many of them to take action — such as working longer and/or retiring later.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号