首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41161篇
  免费   5275篇
  国内免费   4158篇
化学   11013篇
晶体学   963篇
力学   9752篇
综合类   564篇
数学   14831篇
物理学   13471篇
  2024年   102篇
  2023年   465篇
  2022年   833篇
  2021年   946篇
  2020年   1198篇
  2019年   1036篇
  2018年   1065篇
  2017年   1479篇
  2016年   1652篇
  2015年   1305篇
  2014年   2113篇
  2013年   2955篇
  2012年   2526篇
  2011年   2892篇
  2010年   2449篇
  2009年   2709篇
  2008年   2596篇
  2007年   2597篇
  2006年   2390篇
  2005年   2221篇
  2004年   1892篇
  2003年   1708篇
  2002年   1522篇
  2001年   1276篇
  2000年   1199篇
  1999年   1082篇
  1998年   1002篇
  1997年   849篇
  1996年   700篇
  1995年   591篇
  1994年   546篇
  1993年   439篇
  1992年   451篇
  1991年   345篇
  1990年   273篇
  1989年   211篇
  1988年   176篇
  1987年   127篇
  1986年   86篇
  1985年   115篇
  1984年   107篇
  1983年   53篇
  1982年   70篇
  1981年   50篇
  1980年   26篇
  1979年   43篇
  1978年   31篇
  1977年   37篇
  1976年   13篇
  1957年   11篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
A new parallel storm surge model, the Parallel Environmental Model (PEM), is developed and tested by comparisons with analytic solutions. The PEM is a 2‐D vertically averaged, wetting and drying numerical model and can be operated in explicit, semi‐implicit and fully implicit modes. In the implicit mode, the propagation, Coriolis and bottom friction terms can all be treated implicitly. The advection and diffusion terms are solved with a parallel Eulerian–Lagrangian scheme developed for this study. The model is developed specifically for use on parallel computer systems and will function accordingly in either explicit of implicit modes. Storm boundary conditions are based on a simple exponential decay of pressure from the centre of a storm. The simulated flooding caused by a major Category 5 hurricane making landfall in the Indian River Lagoon, Florida is then presented as an example application of the PEM. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
22.
A modified backward difference time discretization is presented for Galerkin approximations for nonlinear hyperbolic equation in two space variables. This procedure uses a local approximation of the coefficients based on patches of finite elements with these procedures, a multidimensional problem can be solved as a series of one‐dimensional problems. Optimal order H01 and L2 error estimates are derived. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
23.
Detailed pH-dependent steady state and picosecond time-resolved tryptophan fluorescence studies on thiocyanate and azide complexes of horseradish peroxidase have been carried out. The fluorescence decay of the single tryptophan in these species was fitted to a discrete three exponential model. Maximum entropy method analysis also gave three distinct regions of lifetime distributions. The fast subnanosecond lifetime component was found to have > 97% amplitude contribution while other two longer lifetime components have small contributions. Small contributions from the nanosecond lifetime components possibly arise from apoprotein impurity or some small amount of disordered heme conformer of the protein. pH dependence of the fast picosecond lifetime components was found to show a systematic behavior which has been interpreted in the light of obligatory conformation change associated with activation of the enzyme at low pH.  相似文献   
24.
In this article we survey the Trefftz method (TM), the collocation method (CM), and the collocation Trefftz method (CTM). We also review the coupling techniques for the interzonal conditions, which include the indirect Trefftz method, the original Trefftz method, the penalty plus hybrid Trefftz method, and the direct Trefftz method. Other boundary methods are also briefly described. Key issues in these algorithms, including the error analysis, are addressed. New numerical results are reported. Comparisons among TMs and other numerical methods are made. It is concluded that the CTM is the simplest algorithm and provides the most accurate solution with the best numerical stability. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
25.
A finite volume solver for the 2D depth‐integrated harmonic hyperbolic formulation of the mild‐slope equation for wave propagation is presented and discussed. The solver is implemented on unstructured triangular meshes and the solution methodology is based upon a Godunov‐type second‐order finite volume scheme, whereby the numerical fluxes are computed using Roe's flux function. The eigensystem of the mild‐slope equations is derived and used for the construction of Roe's matrix. A formulation that updates the unknown variables in time implicitly is presented, which produces a more accurate and reliable scheme than hitherto available. Boundary conditions for different types of boundaries are also derived. The agreement of the computed results with analytical results for a range of wave propagation/transformation problems is very good, and the model is found to be virtually paraxiality‐free. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
26.
A generalized formulation is applied to implement the quadratic upstream interpolation (QUICK) scheme, the second-order upwind (SOU) scheme and the second-order hybrid scheme (SHYBRID) on non-uniform grids. The implementation method is simple. The accuracy and efficiency of these higher-order schemes on non-uniform grids are assessed. Three well-known bench mark convection-diffusion problems and a fluid flow problem are revisited using non-uniform grids. These are: (1) transport of a scalar tracer by a uniform velocity field; (2) heat transport in a recirculating flow; (3) two-dimensional non-linear Burgers equations; and (4) a two-dimensional incompressible Navier-Stokes flow which is similar to the classical lid-driven cavity flow. The known exact solutions of the last three problems make it possible to thoroughly evaluate accuracies of various uniform and non-uniform grids. Higher accuracy is obtained for fewer grid points on non-uniform grids. The order of accuracy of the examined schemes is maintained for some tested problems if the distribution of non-uniform grid points is properly chosen.  相似文献   
27.
28.
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx < 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.  相似文献   
29.
Here we describe analytical and numerical modifications that extend the Differential Reduced Ejector/ mixer Analysis (DREA), a combined analytical/numerical, multiple species ejector/mixing code developed for preliminary design applications, to apply to periodic unsteady flow. An unsteady periodic flow modelling capability opens a range of pertinent simulation problems including pulse detonation engines (PDE), internal combustion engine ICE applications, mixing enhancement and more fundamental fluid dynamic unsteadiness, e.g. fan instability/vortex shedding problems. Although mapping between steady and periodic forms for a scalar equation is a classical problem in applied mathematics, we will show that extension to systems of equations and, moreover, problems with complex initial conditions are more challenging. Additionally, the inherent large gradient initial condition singularities that are characteristic of mixing flows and that have greatly influenced the DREA code formulation, place considerable limitations on the use of numerical solution methods. Fortunately, using the combined analytical–numerical form of the DREA formulation, a successful formulation is developed and described. Comparison of this method with experimental measurements for jet flows with excitation shows reasonable agreement with the simulation. Other flow fields are presented to demonstrate the capabilities of the model. As such, we demonstrate that unsteady periodic effects can be included within the simple, efficient, coarse grid DREA implementation that has been the original intent of the DREA development effort, namely, to provide a viable tool where more complex and expensive models are inappropriate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
30.
A new method for the solution of the damped Burgers' equation is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details. The marker method is applicable to a general class of nonlinear dispersive partial differential equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号