首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11722篇
  免费   83篇
  国内免费   53篇
化学   4676篇
晶体学   14篇
力学   717篇
综合类   1篇
数学   4254篇
物理学   2196篇
  2024年   118篇
  2023年   691篇
  2022年   424篇
  2021年   413篇
  2020年   1462篇
  2019年   1071篇
  2018年   927篇
  2017年   757篇
  2016年   735篇
  2015年   568篇
  2014年   750篇
  2013年   2852篇
  2012年   501篇
  2011年   38篇
  2010年   26篇
  2009年   28篇
  2008年   51篇
  2007年   40篇
  2006年   34篇
  2005年   84篇
  2004年   90篇
  2003年   38篇
  2002年   20篇
  2001年   22篇
  2000年   14篇
  1999年   5篇
  1998年   17篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   10篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   6篇
  1976年   2篇
  1975年   1篇
  1974年   4篇
  1973年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
131.
132.
Kinetic and product studies of the solvolyses of acyclic phosphorochloridates are extended to two cyclic diesters, 2-chloro-1,3,2-dioxaphospholane-2-oxide (1) and 2-chloro-5,5-dimethyl-1,3,2-dioxaphosphorinane-2-oxide (2). Slightly faster solvolyses are observed for 1 than for the acyclic dimethyl phosphorochloridate (3), and 2 solvolyzes somewhat slower than 3. An extended Grunwald–Winstein equation treatment shows similar sensitivities to changes in solvent nucleophilicity and solvent ionizing power for 1, 2, and 3, and a concerted SN2 attack is proposed in each case. Product studies for the solvolyses of 2 in aqueous alcohols are presented.

  相似文献   
133.
134.
Abstract

The reaction of 5(4H)-pyrazolone with phosphorus ylides afforded new triphenylphosphanylidene alkanone derivatives. Moreover, its benzylidene derivative reacted with Wittig–Horner reagents to give the corresponding dialkoxyphosphoryl, alkyl phosphonate, and heterocyclic products. Treatment of pyrazole-4-carbaldehyde with Wittig–Horner reagents and trialkyl phosphites gave the respective alkyl phosphonate adducts. Mechanisms accounting for the formation of the new products are discussed. The biological activity of some of the newly synthesized compounds was also examined.  相似文献   
135.
In this article, we used the Atherton–Todd reaction to synthesize amino acid methyl ester 5′-phosphoamidates of uridine as prodrugs. Their structures were confirmed by 1H NMR, 31P NMR, 13C NMR, IR, and mass spectrometry.

Supplemental materials are available for this article. Go to the publisher′s online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   
136.
Abstract

Organophosphorus compounds such as 6H-dibenzo[c,e][1,2]oxaphosphinine 6-oxide (DOPO, 1) and its derivatives are important and versatile compounds for a broad field of applications. However, a thorough spectral assignment is often subordinate to its chemical properties. This article presents and unambiguously attributes the 1H and 13C NMR spectra of DOPO (1), selected products yielded from the Atherton–Todd reaction (2–4), DOPO-HQ (5) as well as sulfur derivatives (6–7) via a set of 1D- and 2D-NMR experiments. The complex P-C and P-H coupling patterns are discussed and compared with the derivatives possessing different chemical environments around the phosphorus atom. In addition, we compared our results with density functional theory calculations. Even though the prediction of NMR data of organophosphorus compounds via molecular modeling is limited, this study presents a method that yields good results for this class of heterocycles. This knowledge should help to quickly assign NMR spectroscopic data of other DOPO (1) derivatives and can be extrapolated to organophosphorus compounds in general.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental resource: NMR Spectra of Compounds 1-7 (Figures S1 - S15).  相似文献   
137.
138.
Abstract

The synthesis of a variety of substituted bisphenol A polysulfones, including nitro, amino, aminomethyl, ethyl, and methyl derivatives, is described. Nuclear magnetic resonance (NMR) (both proton and carbon, and several 2-D experiments) data confirm conclusions on the substitution site based on arguments on inductive effects in the phenyl rings. The proton ortho to the oxygen in the bisphenol A (BPA) residue is replaced in electrophilic substitution reactions. The degree of substitution was also calculated from the NMR results. The ethyl and methyl derivatives were expected, from the starting reactants, to each have a BPA ring substituted. The NMR data showed that, on the average, this is true. The nitro derivative also has substitution in every BPA ring, while the amino and aminomethyl derivatives have only intermittent BPA rings substituted. Measured degrees of substitution (DS) varied from 0.11 to 2.25.  相似文献   
139.
In this paper, 1,2-bis(2-acetamido-6-pyridyl)ethane, receptor 1, having an ethylene spacer is reported to recognise dicarboxylic acids. The binding study in the solution phase is carried out using 1H NMR (1:1) and UV–vis experiments and in the solid phase by single-crystal X-ray analysis. In 1H NMR, the downfield shifts of specific amide protons of receptor 1 in 1:1 complexes of receptor and guest diacids, and in the UV–vis experiment, the appearance of an isosbestic point as well as significant binding constants are observed, which thus unambiguously support the complexation of receptor 1 with dicarboxylic acids in solution. Receptor 2, simple 2-acetamido-6-methylpyridine, has lower binding constants than receptor 1 due to cooperative binding of two pyridine amide groups with two acid groups of diacids. In the solid phase, the ditopic receptor 1 shows a grid-like polymeric hydrogen-bonded network that changes to a polymeric wave-like 1:1 anti-perpendicular network instead of the synsyn polymeric 1:1 (Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett. 2005 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 46, 7187–7191), antianti polymeric 1:1 (Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem. 2006 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 18, 571–574; Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm. 2008, 10, 507–517; Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron 2008, 64, 6426–6433), synsyn 2:2 (Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc. 1997 (a) Garcia-Tellado, F., Goswami, S., Chang, S.K., Geib, S.J. and Hamilton, A.D. 1990. J. Am. Chem. Soc., 112: 73937394. (b) Geib, S.J.; Vicent, C.; Fan, E.; Hamilton, A.D. Angew. Chem. Int. Ed. Engl.1993, 32, 119–121. (c) Garcia-Tellado, F.; Geib, S.J.; Goswami, S.; Hamilton, A.D. J. Am. Chem. Soc.1991, 113, 9265–9269. (d) Karle, I.L.; Ranganathan, D.; Haridas, V. J. Am. Chem. Soc.1997, 119, 2777–2783. (e) Moore, G.; Papamicaël, C.; Levacher, V.; Bourguignon, J.; Dupas, G. Tetrahedron2004, 60, 4197–4204. (f) Korendovych, I.V.; Cho, M.; Makhlynets, O.V.; Butler, P.L.; Staples, R.J.; Rybak-Akimova, E.V. J. Org. Chem.2008, 73, 4771–4782. (g) Ghosh, K.; Masanta, G.; Fröhlich, R.; Petsalakis, I.D.; Theodorakopoulos, G. J. Phys. Chem. B2009, 113, 7800–7809 [Google Scholar], 119, 2777–2783) or topbottom-bound 1:1 (Garcia-Tellado, F.; Goswami, S.; Chang, S.K.; Geib, S.J.; Hamilton, A.D. J. Am. Chem. Soc. 1990 (a) Goswami, S., Ghosh, K. and Dasgupta, S. 2000. J. Org. Chem., 65: 19071914. (b) Goswami, S.; Ghosh, K.; Mukherjee, R. Tetrahedron2001, 57, 4987–4993. (c) Goswami, S.; Ghosh, K.; Halder, M. Tetrahedron Lett.1999, 40, 1735–1738. (d) Goswami, S.; Dey, S.; Fun, H.-K.; Anjum, S.; Rahman, A.-U. Tetrahedron Lett.2005, 46, 7187–7191. (e) Goswami, S.; Jana, S.; Dey, S.; Razak, I.A.; Fun, H.-K. Supramol. Chem.2006, 18, 571–574. (f) Goswami, S.; Jana, S.; Fun, H.-K. Cryst. Eng. Comm.2008, 10, 507–517. (g) Goswami, S.; Jana, S.; Dey, S.; Sen, D.; Fun, H.-K.; Chantrapromma, S. Tetrahedron2008,64, 6426–6433. (h) Goswami, S.; Dey, S.; Jana, S. Tetrahedron2008, 64, 6358–6363 [Google Scholar], 112, 7393–7394) co-crystals.

  相似文献   
140.
Here, we report on the study of cationic amidoammonium calix[4]resorcinarenes 15 of various lipophilicity capable of binding acid–base indicator methyl orange (MO). We identified the contributions of macrocycle aggregation and conformational mobility in the binding of MO. The effective pKa values of bound MO systematically decrease as the size and the packing density of the aggregates increase with an increase in calixresorcinarene lipophilicity. Consideration of a series of macrocycles clearly shows that large aggregates form most stable complexes, binding guests not on individual level but as aggregates. It was found that the most stable MO complex with 5 is formed due to electrostatic binding with ammonium groups of the macrocycle and incapsulation of MO in a hydrophobic layer of the aggregates. We have shown that competitive binding of MO and cationic surfactants by aggregates of 5 is suitable for visual/spectrophotometric detection of colourless anionic substrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号