首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38014篇
  免费   3243篇
  国内免费   3396篇
化学   14477篇
晶体学   129篇
力学   4135篇
综合类   215篇
数学   12184篇
物理学   13513篇
  2024年   153篇
  2023年   937篇
  2022年   947篇
  2021年   1036篇
  2020年   2230篇
  2019年   1791篇
  2018年   1646篇
  2017年   1589篇
  2016年   1734篇
  2015年   1435篇
  2014年   2044篇
  2013年   4868篇
  2012年   1905篇
  2011年   1730篇
  2010年   1336篇
  2009年   1739篇
  2008年   1806篇
  2007年   1879篇
  2006年   1572篇
  2005年   1400篇
  2004年   1167篇
  2003年   1141篇
  2002年   1021篇
  2001年   803篇
  2000年   816篇
  1999年   700篇
  1998年   666篇
  1997年   510篇
  1996年   357篇
  1995年   342篇
  1994年   295篇
  1993年   289篇
  1992年   275篇
  1991年   229篇
  1990年   254篇
  1989年   209篇
  1988年   181篇
  1987年   179篇
  1986年   149篇
  1985年   151篇
  1984年   147篇
  1983年   86篇
  1982年   120篇
  1981年   119篇
  1980年   99篇
  1979年   108篇
  1978年   86篇
  1977年   82篇
  1976年   71篇
  1973年   63篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
991.
992.
General Lp dual curvature measures have recently been introduced by Lutwak, Yang and Zhang [24]. These new measures unify several other geometric measures of the Brunn–Minkowski theory and the dual Brunn–Minkowski theory. Lp dual curvature measures arise from qth dual intrinsic volumes by means of Alexandrov-type variational formulas. Lutwak, Yang and Zhang [24] formulated the Lp dual Minkowski problem, which concerns the characterization of Lp dual curvature measures. In this paper, we solve the existence part of the Lp dual Minkowski problem for p>1 and q>0, and we also discuss the regularity of the solution.  相似文献   
993.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
994.
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.  相似文献   
995.
The increasing availability of real-space interaction energies between quantum atoms or fragments that provide a chemically intuitive decomposition of intrinsic bond energies into electrostatic and covalent terms [see, for instance, Chem. Eur. J. 2018 , 24, 9101] provides evidence for differences between the physicist's concept of interaction and the chemist's concept of a bond. Herein, it is argued that, for the former, all types of interactions are treated equally, whereas, for the latter, only the covalent short-range interactions have actually been used to build intuition about chemical graphs and chemical bonds. This has led to the bonding role of long-range Coulombic terms in molecular chemistry being overlooked. Simultaneously, blind consideration of electrostatic terms in chemical bonding parlance may lead to confusion. The relationship between these concepts is examined herein, and some notes of caution on how to merge them are proposed.  相似文献   
996.
The non-equilibrium electron–positron–photon plasma thermalization process is studied using relativistic Boltzmann solver, taking into account quantum corrections both in non-relativistic and relativistic cases. Collision integrals are computed from exact QED matrix elements for all binary and triple interactions in the plasma. It is shown that in non-relativistic case (temperatures kBT0.3mec2) binary interaction rates dominate over triple ones, resulting in establishment of the kinetic equilibrium prior to final relaxation towards the thermal equilibrium, in agreement with the previous studies. On the contrary, in relativistic case (final temperatures kBT0.3mec2) triple interaction rates are fast enough to prevent the establishment of kinetic equilibrium. It is shown that thermalization process strongly depends on quantum degeneracy in initial state, but does not depend on plasma composition.  相似文献   
997.
We report a Cu-based metal–organic framework (MOF) decorated by CuO nanostructures as an efficient catalyst for the oxygen evolution reaction (OER). MIL-53(Cu) was synthesized by a hydrothermal approach using 1,4-bezenedicarboxylic acid as organic precursor and further annealed at 300°C to form CuO nanostructures on its surface. The produced electrocatalyst, CuO@MIL-53(Cu), was characterized using various techniques. Under alkaline conditions, the developed electrocatalyst exhibited an overpotential of 801 and 336 mV versus RHE at 10 and 1 mA cm−2, respectively. The reproducibility of the catalytic performance was validated using several electrodes. It was confirmed that the CuO hair-like nanostructures grown on MIL-53(Cu) using thermal treatment exhibit high OER activity, good kinetics and durability. CuO@MIL-53(Cu) is an economic noble-metal-free OER electrocatalyst. It has potential for application as anode material for sustainable energy technologies like batteries, fuel cells and water electrolysis.  相似文献   
998.
A novel metal-doped metal–organic framework (MOF) was developed by incorporating salen–Mg into NH2–MIL-101(Cr) structure under ambient conditions. The Schiff base complex was successfully prepared by condensing salicylaldehyde with a free amino group and then coordinating metal ions. Such a structure can endow the sample with higher CO2 adsorption performance. At 0°C and 1 bar, the salen–Mg-modified sample achieves the maximum adsorption capacity of 2.18 mmol g−1 for CO2, which was 5.8% higher than the pristine salen–MOF under the same conditions. Notably, the Freundlich model indicates that the CO2 adsorption process of all samples conforms to reversible adsorption. However, the correlation coefficients (R2) of the Mg-doped sample are lower than that of the pristine sample. Besides, the CO2/N2 adsorption selectivity and isosteric heat also show a similar trend. These results indicate that the salen–Mg can enhance the interaction between the material and CO2 molecules.  相似文献   
999.
Previously, master equation (ME) simulations using semiclassical transition state theory (SCTST) and high-accuracy extrapolated ab initio thermochemistry (HEAT) predicted rate constants in excellent agreement with published experimental data over a wide range of pressure and temperatures ≳250 K, but the agreement was not as good at lower temperatures. Possible reasons for this reduced performance are investigated by (a) critically evaluating the published experimental data and by investigating; (b) three distinct ME treatments of angular momentum, including one that is exact at the zero- and infinite-pressure limits; (c) a hindered-rotor model for HOCO that implicitly includes the cis- and trans-conformers; (d) possible empirical adjustments of the thermochemistry; (e) possible empirical adjustments to an imaginary frequency controlling tunneling; (f) including or neglecting the prereaction complex PRC1; and (g) its possible bimolecular reactions. Improvements include better approximations to factors in SCTST and using the Hill and van Vleck treatment of angular momentum coupling. Evaluation of literature data does not reveal any specific shortcomings, but the stated uncertainties may be underestimated. All ME treatments give excellent fits to experimental data at T ≥ 250 K, but the discrepancy at T < 250 K persists. Note that each ME model requires individual empirical energy transfer parameters. Thermochemical adjustments were unable to match the experimental H/D kinetic isotope effects. Adjusting an imaginary frequency can achieve good fits, but the adjustments are unacceptably large. Whether PRC1 and its possible bimolecular reactions are included had little effect. We conclude that none of the adjustments is an improvement over the unadjusted theory. Note that only one set of experimental data exists in the regime of the discrepancy with theory, and data for DO + CO are scanty.  相似文献   
1000.
Quantitation of drugs used for the treatment of chronic lymphocytic leukemia in various biological matrices during both pre-clinical and clinical developments is very important, often in routine therapeutic drug monitoring. The first developed methods for quantitation were traditionally done on LC in combination with either UV or fluorescence detection. However, the emergence of LC with mass spectrometry in tandem in early 1990s has revolutionized the quantitation as it has provided better sensitivity and selectivity within a shorter run time; therefore it has become the choice of method for the analysis of various drugs. In this article, an overview of various bioanalytical methods (HPLC or LC–MS/MS) for the quantification of drugs for the treatment of chronic lymphocytic leukemia, along with applicability of these methods, is given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号