首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   64篇
  国内免费   66篇
化学   130篇
晶体学   7篇
力学   42篇
综合类   9篇
数学   681篇
物理学   135篇
  2024年   2篇
  2023年   11篇
  2022年   12篇
  2021年   14篇
  2020年   36篇
  2019年   32篇
  2018年   20篇
  2017年   26篇
  2016年   28篇
  2015年   27篇
  2014年   29篇
  2013年   104篇
  2012年   26篇
  2011年   43篇
  2010年   25篇
  2009年   53篇
  2008年   59篇
  2007年   58篇
  2006年   47篇
  2005年   51篇
  2004年   29篇
  2003年   31篇
  2002年   44篇
  2001年   25篇
  2000年   36篇
  1999年   30篇
  1998年   22篇
  1997年   22篇
  1996年   14篇
  1995年   7篇
  1994年   11篇
  1993年   4篇
  1992年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1004条查询结果,搜索用时 15 毫秒
61.
For the most part, analytical solutions for steady unsaturated infiltration have been restricted to infinite and semi-infinite seepage geometries, using the quasi-linear approximation for the hydraulic conductivity. We provide analytical series methods to solve the steady quasi-linear flow equations, in finite irregular seepage geometries. Unlike the classical approach, the series method has been modified, to cater for arbitrary boundary geometry and surface recharge distributions. The matrix flux potential and the stream function both satisfy the same governing partial differential equation, and the stream function formulation is used to estimate the series coefficients. For a finite vadose zone, the stream function solution does not uniquely determine the matrix flux potential, when flux boundary conditions are used. Consequently, the stream function solution applies to a range of moisture distributions, for given infiltration and evapotranspiration rates through the surface.  相似文献   
62.
The shape of a charged jet is determined in the approximation of a strong electric field. The stability of the jet with respect to both axisymmetric and nonaxisymmetric perturbations of the sinusoidal type is investigated in the linear approximation. The domains of predominance of the axisymmetric and bending modes and the longitudinal partition mode are determined. Experimental data on the longitudinal partition of a polymeric jet into several daughter jets are given.  相似文献   
63.
We consider in this article a nonlinear reaction–diffusion system with a transport term (L,∇ x )u, where L is a given vector field, in an unbounded domain Ω. We prove that, under natural assumptions, this system possesses a locally compact attractor in the corresponding phase space. Since the dimension of this attractor is usually infinite, we study its Kolmogorov’s ɛ-entropy and obtain upper and lower bounds of this entropy. Moreover, we give a more detailed study of the spatio-temporal chaos generated by the spatially homogeneous RDS in . In order to describe this chaos, we introduce an extended (n + 1)-parametrical semigroup, generated on the attractor by 1-parametrical temporal dynamics and by n-parametrical group of spatial shifts ( = spatial dynamics). We prove that this extended semigroup has finite topological entropy, in contrast to the case of purely temporal or purely spatial dynamics, where the topological entropy is infinite. We also modify the concept of topological entropy in such a way that the modified one is finite and strictly positive, in particular for purely temporal and for purely spatial dynamics on the attractor. In order to clarify the nature of the spatial and temporal chaos on the attractor, we use (following Zelik, 2003, Comm. Pure. Appl. Math. 56(5), 584–637) another model dynamical system, which is an adaptation of Bernoulli shifts to the case of infinite entropy and construct homeomorphic embeddings of it into the spatial and temporal dynamics on . As a corollary of the obtained embeddings, we finally prove that every finite dimensional dynamics can be realized (up to a homeomorphism) by restricting the temporal dynamics to the appropriate invariant subset of .  相似文献   
64.
Amphiphilic urethane acryale hydrogels containing ionic groups (dimethylolpropionic acid) were prepared by varying the molecular weight of the soft segment (polyether type) and the type of diisocyanate, and their mechanical properties were examined. They showed heterophasic gel structure composed of ionic hard domains induced by aggregation of the ionic groups and polyether soft domains comprising the urethane acrylate network. This heterophasic structure could be confirmed by dynamic mechanical analysis (DMA) and by wide-angle X-ray scattering analysis (WAXS); the crystallinity detected by WAXS and the transition peak of the ionic hard domains detected by DMA strongly suggested that there were ionic aggregates. These ionic aggregates acted as reinforcing fillers in the network, which eventually enhanced the tensile strength of the hydrogels. Above all, the tensile properties of the hydrogels were of interest in that the trends of the stress-strain curves were consistent with the rubbery ones. It is believed that the higher purity of the polyether soft domains resulted from the heterophasic gel structure imparting further elastomeric properties on the network. Received: 31 July 1998 Accepted in revised form: 15 October 1998  相似文献   
65.
The numerical solution of the heat equation in unbounded domains (for a 1D problem‐semi‐infinite line and for a 2D one semi‐infinite strip) is considered. The artificial boundaries are introduced and the exact artificial boundary conditions are derived. The original problems are transformed into problems on finite domains. The space semi‐discretization by finite element method and the full approximation by the implicit‐explicit Euler's method are presented. The solvability of the full discretization schemes is analyzed. Computational examples demonstrate the accuracy and the efficiency of the algorithms. Also, the behavior of blowing up solutions is examined numerically. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 379–399, 2007  相似文献   
66.
The explicit implicit domain decomposition methods are noniterative types of methods for nonoverlapping domain decomposition but due to the use of the explicit step for the interface prediction, the methods suffer from inaccuracy of the usual explicit scheme. In this article a specific type of first‐ and second‐order splitting up method, of additive type, for the dependent variables is initially considered to solve the two‐ or three‐dimensional parabolic problem over nonoverlapping subdomains. We have also considered the parallel explicit splitting up algorithm to define (predict) the interface boundary conditions with respect to each spatial variable and for each nonoverlapping subdomains. The parallel second‐order splitting up algorithm is then considered to solve the subproblems defined over each subdomain; the correction step will then be considered for the predicted interface nodal points using the most recent solution values over the subdomains. Finally several model problems will be considered to test the efficiency of the presented algorithm. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   
67.
The heterogeneous higher order structure and molecular motion in a single crystalline film of a vinylidene fluoride (VDF) and trifluoroethylene (TrFE) copolymer with 73 mol % VDF was investigated with the 1H–13C cross‐polarization/magic‐angle spinning NMR technique. A transient oscillation was observed in plots of the 13C peak intensity versus the contact time for the CH2, CHF, and CF2 groups. On the basis of the extended cross‐relaxation theory of spin diffusion, we determined that the oscillation behavior was caused by the TrFE‐rich segments in the chain and that the crystal consisted of VDF‐rich and TrFE‐rich domains. The former had TrFE‐rich segments in VDF and TrFE fractions of 0.24 and 0.27, respectively, and the latter had VDF‐rich segments in a VDF fraction of 0.49. The spin–lattice relaxation time T1ρH in the rotating frame for each group was minimal in the three temperature regions of β, αb, and αc (↑) on heating and in the two temperature regions of α1D and αc (↓) on cooling. The αc (↑) and αc (↓) processes depended on the first‐order ferroelectric phase‐transition regions on heating and cooling, respectively. The motional modes for the other processes were confirmed by the T1ρH minimum behavior of the VDF and TrFE groups in the TrFE‐rich domain and the VDF‐rich segments in the VDF‐rich domain. The β and αb processes were attributed to the flip–flop motion of the TrFE‐rich segments and the competitive motion of the TrFE‐ and VDF‐rich segments in the ferroelectric phase, respectively. The α1D process was due to the one‐dimensional diffusion motion of the conformational defects along the chain in the paraelectric phase, accompanied by the trans and gauche transformation of the VDF conformers of ttg+tg? and g+tg?tt. The effect of the competitive motion of the TrFE‐rich segment on the thermal stability of the VDF‐rich segment in the chain near the Curie temperature was examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1026–1037, 2002  相似文献   
68.
The scaled boundary finite‐element method is a novel semi‐analytical technique, combining the advantages of the finite element and the boundary element methods with unique properties of its own. The method works by weakening the governing differential equations in one co‐ordinate direction through the introduction of shape functions, then solving the weakened equations analytically in the other (radial) co‐ordinate direction. These co‐ordinate directions are defined by the geometry of the domain and a scaling centre. The method can be employed for both bounded and unbounded domains. This paper applies the method to problems of potential flow around streamlined and bluff obstacles in an infinite domain. The method is derived using a weighted residual approach and extended to include the necessary velocity boundary conditions at infinity. The ability of the method to model unbounded problems is demonstrated, together with its ability to model singular points in the near field in the case of bluff obstacles. Flow fields around circular and square cylinders are computed, graphically illustrating the accuracy of the technique, and two further practical examples are also presented. Comparisons are made with boundary element and finite difference solutions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
69.
本文研究在2维Lipschitz区域上Navier-Stokes方程的非齐边界问题的长时间行为,在外力是时间的拟周期下,通过引入双参过程的概念,证明一致吸引子A的存在性,并给出一致吸引子A的Hausdorff维数的上界估计。  相似文献   
70.
Optimal competence set expansion using deduction graphs   总被引:1,自引:0,他引:1  
A competence set is a collection of skills used to solve a problem. Based on deduction graph concepts, this paper proposes a method of finding an optimal process so as to expand a decision maker's competence set to enable him to solve his problem confidently. Using the concept of minimum spanning tree, Yu and Zhang addressed the problem of the optimal expansion of competence sets. In contrast, the method proposed here enjoys the following advantages: it can deal with more general problems involving intermediate skills and compound skills; it can find the optimal solution by utilizing a 0–1 integer program; and it can be directly extended to treat multilevel competence set problems, and thus is more practically useful.This work was supported by the National Science Council, Taipei, Taiwan, Republic of China, Grant No. NSC-81-0301-H-009-501.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号