首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   17篇
  国内免费   41篇
化学   169篇
晶体学   1篇
力学   16篇
综合类   4篇
数学   116篇
物理学   97篇
  2023年   19篇
  2022年   5篇
  2021年   8篇
  2020年   13篇
  2019年   14篇
  2018年   5篇
  2017年   10篇
  2016年   14篇
  2015年   10篇
  2014年   22篇
  2013年   35篇
  2012年   25篇
  2011年   13篇
  2010年   20篇
  2009年   17篇
  2008年   19篇
  2007年   23篇
  2006年   12篇
  2005年   11篇
  2004年   15篇
  2003年   9篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   4篇
  1994年   7篇
  1993年   5篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1987年   1篇
  1985年   5篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
排序方式: 共有403条查询结果,搜索用时 722 毫秒
401.
Highly selective photoreduction of CO2 to valuable hydrocarbons is of great importance to achieving a carbon-neutral society. Precisely manipulating the formation of the Metal1⋅⋅⋅C=O⋅⋅⋅Metal2 (M1⋅⋅⋅C=O⋅⋅⋅M2) intermediate on the photocatalyst interface is the most critical step for regulating selectivity, while still a significant challenge. Herein, inspired by the polar electronic structure feature of CO2 molecule, we propose a strategy whereby the Lewis acid-base dual sites confined in a bimetallic catalyst surface are conducive to forming a M1⋅⋅⋅C=O⋅⋅⋅M2 intermediate precisely, which can promote selectivity to hydrocarbon formation. Employing the Ag2Cu2O3 nanowires with abundant Cu⋅⋅⋅Ag Lewis acid-base dual sites on the preferred exposed {110} surface as a model catalyst, 100 % selectivity toward photoreduction of CO2 into CH4 has been achieved. Subsequent surface-quenching experiments and density functional theory (DFT) calculations verify that the Cu⋅⋅⋅Ag Lewis acid-base dual sites do play a vital role in regulating the M1⋅⋅⋅C=O⋅⋅⋅M2 intermediate formation that is considered to be prone to convert CO2 into hydrocarbons. This study reports a highly selective CO2 photocatalyst, which was designed on the basis of a newly proposed theory for precise regulation of reaction intermediates. Our findings will stimulate further research on dual-site catalyst design for CO2 reduction to hydrocarbons.  相似文献   
402.
Whereas synthetically catalyzed nitrogen reduction (N2R) to produce ammonia is widely studied, catalysis to instead produce hydrazine (N2H4) has received less attention despite its considerable mechanistic interest. Herein, we disclose that irradiation of a tris(phosphine)borane (P3B) Fe catalyst, P3BFe+, significantly alters its product profile to increase N2H4 versus NH3; P3BFe+ is otherwise known to be highly selective for NH3. We posit a key terminal hydrazido intermediate, P3BFe=NNH2, as selectivity-determining. Whereas its singlet ground state undergoes protonation to liberate NH3, a low-lying triplet excited state leads to reactivity at Nα and formation of N2H4. Associated electrochemical and spectroscopic studies establish that N2H4 lies along a unique product pathway; NH3 is not produced from N2H4. Our findings are distinct from the canonical mechanism for hydrazine formation, which proceeds via a diazene (HN=NH) intermediate and showcase light as a tool to tailor selectivity.  相似文献   
403.
A fluorescent dinuclear cadmium(II) based discrete metal complex of composition [CdII2L(μ-Cl)Cl2]( 1 ) is used {HL=2,6-bis[2-(methylamino)ethyliminomethyl]-4-Ethylphenol} for the specific recognition of 2,4,6-trinitrophenol (picric acid; PA) via fluorescence quenching phenomenon among various nitroaromatic compounds through a chemodosimetric approach. It has been established that 1 is a chemodosimeter in pure water. We have successfully been able to isolate three compounds: chemodosimeter 1 ; an intermediate complex 2 of composition [CdII(LH2)Cl2](Picrate) and final association complex 3 of composition [NH3(CH2CH2)NH2CH3](Picrate)2. Compounds have been characterised by CHN elemental analyses, single crystal X-ray crystallography, PXRD, NMR and FTIR. Selective interaction of 1 with PA was evaluated by fluorescence, UV-Vis and life time measurements. Fluorescence quenching of 1 occurs definitely due to the formation of compound 3 via intermediate 2 involving partial decomplexation, hydrolysis and proton transfer phenomena in solution during the course of sensing. The quenching constant (Ksv), association constant (Ka) and detection limit (LOD) of the complex 1 for picric acid are ∼1.55×105 M−1, ∼1.8×1010 M−2 and ∼0.47 μM (0.108 ppm), respectively. Mechanism of sensing is proposed and the very rare case of isolation and characterization of intermediate in picric acid sensing is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号