首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73355篇
  免费   8847篇
  国内免费   6504篇
化学   13207篇
晶体学   1007篇
力学   13903篇
综合类   1030篇
数学   38009篇
物理学   21550篇
  2024年   150篇
  2023年   735篇
  2022年   1084篇
  2021年   1377篇
  2020年   2073篇
  2019年   1886篇
  2018年   1885篇
  2017年   2260篇
  2016年   2556篇
  2015年   2050篇
  2014年   3510篇
  2013年   5807篇
  2012年   3923篇
  2011年   4737篇
  2010年   4113篇
  2009年   4680篇
  2008年   4748篇
  2007年   4787篇
  2006年   4281篇
  2005年   4050篇
  2004年   3432篇
  2003年   3208篇
  2002年   2872篇
  2001年   2321篇
  2000年   2226篇
  1999年   1988篇
  1998年   1906篇
  1997年   1635篇
  1996年   1269篇
  1995年   1068篇
  1994年   977篇
  1993年   737篇
  1992年   703篇
  1991年   603篇
  1990年   498篇
  1989年   348篇
  1988年   306篇
  1987年   249篇
  1986年   206篇
  1985年   231篇
  1984年   228篇
  1983年   127篇
  1982年   173篇
  1981年   149篇
  1980年   103篇
  1979年   112篇
  1978年   80篇
  1977年   75篇
  1976年   43篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
241.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
242.
The flow around spherical, solid objects is considered. The boundary conditions on the solid boundaries have been applied by replacing the boundary with a surface force distribution on the surface, such that the required boundary conditions are satisfied. The velocity on the boundary is determined by extrapolation from the flow field. The source terms are determined iteratively, as part of the solution. They are then averaged and are smoothed out to nearby computational grid points. A multi‐grid scheme has been used to enhance the computational efficiency of the solution of the force equations. The method has been evaluated for flow around both moving and stationary spherical objects at very low and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at creeping flow and at Re=100. The multi‐grid scheme is shown to enhance the convergence rate up to a factor 10 as compared to single grid approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
243.
The process of single liquid drop impact on thin liquid surface is numerically simulated with moving particle semi‐implicit method. The mathematical model involves gravity, viscosity and surface tension. The model is validated by the simulation of the experimental cases. It is found that the dynamic processes after impact are sensitive to the liquid pool depth and the initial drop velocity. In the cases that the initial drop velocity is low, the drop will be merged with the liquid pool and no big splash is seen. If the initial drop velocity is high enough, the dynamic process depends on the liquid depth. If the liquid film is very thin, a bowl‐shaped thin crown is formed immediately after the impact. The total crown subsequently expands outward and breaks into many tiny droplets. When the thickness of the liquid film increases, the direction of the liquid crown becomes normal to the surface and the crown propagates outward. It is also found that the radius of the crown is described by a square function of time: rC = [c(t ? t0)]0.5. When the liquid film is thick enough, a crown and a deep cavity inside it are formed shortly after the impact. The bottom of the cavity is initially oblate and then the base grows downward to form a sharp corner and subsequently the corner moves downward. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
244.
A least‐squares meshfree method based on the first‐order velocity–pressure–vorticity formulation for two‐dimensional incompressible Navier–Stokes problem is presented. The convective term is linearized by successive substitution or Newton's method. The discretization of all governing equations is implemented by the least‐squares method. Equal‐order moving least‐squares approximation is employed with Gauss quadrature in the background cells. The boundary conditions are enforced by the penalty method. The matrix‐free element‐by‐element Jacobi preconditioned conjugate method is applied to solve the discretized linear systems. Cavity flow for steady Navier–Stokes problem and the flow over a square obstacle for time‐dependent Navier–Stokes problem are investigated for the presented least‐squares meshfree method. The effects of inaccurate integration on the accuracy of the solution are investigated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
245.
Numerical simulation aspects, related to low Reynolds number free boundary viscous flows at micro and mesolevel during the resin impregnation stage of the liquid composite moulding process (LCM), are presented in this article. A free boundary program (FBP), developed by the authors, is used to track the movement of the resin front accurately by accounting for the surface tension effects at the boundary. Issues related to the global and local mass conservation (GMC and LMC) are identified and discussed. Unsuitable conditions for LMC and consequently GMC are uncovered at low capillary numbers, and hence a strategy for the numerical simulation of such flows is suggested. FBP encompasses a set of subroutines that are linked to modules in ANSYS. FBP can capture the void formation dynamics based on the analysis developed. We present resin impregnation dynamics in two dimensions. Extension to three dimensions is a subject for further research. Several examples are shown and efficiency of different stabilization techniques are compared. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
246.
The paper presents a new formulation of the integral boundary element method (BEM) using subdomain technique. A continuous approximation of the function and the function derivative in the direction normal to the boundary element (further ‘normal flux’) is introduced for solving the general form of a parabolic diffusion‐convective equation. Double nodes for normal flux approximation are used. The gradient continuity is required at the interior subdomain corners where compatibility and equilibrium interface conditions are prescribed. The obtained system matrix with more equations than unknowns is solved using the fast iterative linear least squares based solver. The robustness and stability of the developed formulation is shown on the cases of a backward‐facing step flow and a square‐driven cavity flow up to the Reynolds number value 50 000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
247.
有限长通电螺线管空间的磁场分布   总被引:2,自引:0,他引:2  
惠小强  陈文学 《物理与工程》2004,14(2):22-23,25
本文计算了有限长通电螺线管空间的磁感应强度分布,给出了解析表达式,并绘出了它们的空间分布图。  相似文献   
248.
249.
The matrix formula developed in the context of heterochain theory, M?w = M?wp + WF ( I ? M )?1 S , was applied to describe the molecular weight development during free‐radical multicomponent polymerization. All of the required probabilistic parameters are expressed in terms of the kinetic‐rate constants and the various concentrations associated with them. In free‐radical polymerization, the number of heterochain types, N, needs to be extrapolated to infinity, and such extrapolation is conducted with only three different N values. This matrix formula can be used as a benchmark test if other approximate approaches can give reasonable estimates of the weight‐average molecular weights. The moment equations with the average pseudo‐kinetic‐rate constants for branching and crosslinking reactions may provide poor estimates when the copolymer composition drift during polymerization is very significant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2801–2812, 2004  相似文献   
250.
The Simha and Somcynsky (S–S) statistical thermodynamics theory was used to compute the solubility parameters as a function of temperature and pressure [δ = δ(T, P)], for a series of polymer melts. The characteristic scaling parameters required for this task, P*, T*, and V*, were extracted from the pressure–temperature–volume (PVT) data. To determine the potential polymer–polymer miscibility, the dependence of δ versus T (at ambient pressure) was computed for 17 polymers. Close proximity of the δ versus T curves for four miscible polymer pairs: PPE/PS, PS/PVME, and PC/PMMA signaled the usefulness of this approach. It is noteworthy, that the tabulated solubility parameters (derived from the solution data under ambient conditions) propounded the immiscibility of the PVC/PVAc pair. The computed values of δ also suggested miscibility for polymer pairs of unknown miscibility, namely PPE/PVC, PPE/PVAc, and PET/PSF. In recognizing the limitations of the solubility parameter approach (the omission of several thermodynamic contributions), these preliminary results are auspicious because they indicate a new route for estimating the miscibility of any polymeric material at a given temperature and pressure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2909–2915, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号