首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   0篇
化学   10篇
晶体学   3篇
力学   70篇
数学   1篇
物理学   17篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   10篇
  2015年   3篇
  2014年   12篇
  2013年   7篇
  2012年   4篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   12篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   2篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
81.
This paper explores indentation-triggered microstructural instability in hyperelastic cellular solids through combined experimental, numerical, and theoretical efforts. The results demonstrate that when the indentation depth is greater than a critical value, local instability occurs and further propagates into a rectangular region beneath the indenter. The width of the rectangular region scales with the contact width, and we propose a simple scaling relation to estimate the maximum depth to which the instability can propagate based on the elastic contact theory. The results reported here may find such applications as in the integrity evaluation of soft cellular materials and structures and the development of advanced functional materials with unique optical, acoustic and wetting properties.  相似文献   
82.
Reverse plasticity in single crystal silicon nanospheres   总被引:1,自引:0,他引:1  
Nanoparticles in the range of 20 to 100 nm in size can be deposited, isolated, and individually probed for their mechanical properties. With a hypersonic plasma particle deposition technique, this has been successfully accomplished for silicon and titanium. We have already shown that silicon nanoparticles are superhard in the 30 to 50 GPa range after work hardening (Gerberich, W.W., Mook, W.M., Perrey, C.R., Carter, C.B., Baskes, M.I., Mukherjee, R., Gidwani, A., Heberlein, J., McMurry, P.H., Girshick, S.L., 2003a. Superhard silicon nanospheres. J. Mech. Phys. Solids 51, 979). At the same time when small nanospheres are compressed, a fraction of the plastic strain is reversed after unloading. Initially, the amount of reverse dislocation motion was small but appeared to accelerate once a threshold strain was reached. The cumulative reverse plastic strain from repeated loading of the same nanosphere appeared to increase from less than 0.04 to approximately 0.4 as cumulative strain increased from 0.2 to 0.6. For large strains then, it appears that a greater amount of plastic strain is recovered after unloading. This can at least partially be understood in terms of the enormous back stress developed at the small scale when dislocations are only a few nm apart. As the ramifications to nanoscopic features on MEMS, micromachines and magnetic recording devices is considerable, it is desirable to understand if a length scale can be developed for such phenomena. In terms of classic dislocation theory an attempt is made. Problems and prospects are discussed with regards to predictive models for hardness and reverse plasticity.  相似文献   
83.
Hardness of materials increases with decreasing indentation depth from macro-to nano-scales, which is known as the indentation size effect (ISE). This effect has been associated with indenter shape, frictional forces, dislocation models and other features. We show an anomalously high ISE for a 1-μm subsurface layer in the hybrid nanocomposites based on densely cross-linked Cyanate Ester Resins (CER) containing functionalized 3-D POSS or 2-D MMT nanoparticles (NP). This effect disappears after mechanical stripping of the surface layer. Energy dispersive X-ray (EDX) spectral analysis shows that this anomaly was caused by increased content of NP (Si and Al elements), by 2.5 times, in the 1-μm subsurface layer. The hardness of the 1-μm subsurface layer in these brittle nanocomposites is due to its peculiar composition, and must be taken into account when considering mechanical strength and frictional properties.  相似文献   
84.
Experimental results are presented which show that the indentation size effect for pyramidal and spherical indenters can be correlated. For a pyramidal indenter, the hardness measured in crystalline materials usually increases with decreasing depth of penetration, which is known as the indentation size effect. Spherical indentation also shows an indentation size effect. However, for a spherical indenter, hardness is not affected by depth, but increases with decreasing sphere radius. The correlation for pyramidal and spherical indenter shapes is based on geometrically necessary dislocations and work-hardening. The Nix and Gao indentation size effect model (J. Mech. Phys. Solids 46 (1998) 411) for conical indenters is extended to indenters of various shapes and compared to the experimental results.  相似文献   
85.
This study investigates the compressive deformation behavior of a low-density polymeric foam at different strain rates. The material tested has micron-sized pores with a closed cell structure. The porosity is about 94%. During a uni-axial compressive test, the macroscopic stress–strain curve indicates a plateau region during plastic deformation. Finite Element Method (FEM) simulation was carried out, in which the yield criterion considered both components of Mises stress and hydrostatic stress. By using the present FEM and experimental data, we established a computational model for the plastic deformation behavior of porous material. To verify our model, several indentation experiments with different indenters (spherical indentation and wedge indentation) were carried out to generate various tri-axial stress states. From the series of experiments and computations, we observed good agreement between the experimental data and that generated by the computational model. In addition, the strain rate effect is examined for a more reliable prediction of plastic deformation. Therefore, the present computational model can predict the plastic deformation behavior (including time-dependent properties) of porous material subjected to uni-axial compression and indentation loadings.  相似文献   
86.
This paper presents experimental and theoretical results that characterize the adhesion of MEMS cantilevers by means of mechanical actuation. Micro-cantilever beams are loaded at various locations along the freestanding portion of the beam using a nanoindenter. Transitions between three equilibrium configurations (freestanding, arc-shaped, and s-shaped beams) and the response to cyclic loading are studied experimentally. The resulting mechanical response is used to estimate the interface adhesion energy (using theoretical models), and to quantify the energy dissipated during cyclic loading. The experiments reveal interesting behaviors related to adhesion: (i) path dependence during mechanical loading of adhered beams, (ii) history dependence of interfacial adhesion energy during repeated loading, and (iii) energy dissipation during cyclic loading, which scales roughly with estimated cyclic changes in the size of the adhered regions. The experimental results are interpreted in the context of elementary fracture-based adhesion and contact models, and briefly discussed in terms of their implications regarding the nature of adhesion and future modeling to establish adhesion mechanisms.  相似文献   
87.
The speed of the surface Rayleigh wave, which is related to the viscoelastic properties of the medium, can be measured by noninvasive and noncontact methods. This technique has been applied in biomedical applications such as detecting skin diseases. Static spherical indentation, which quantifies material elasticity through the relationship between loading force and displacement, has been applied in various areas including a number of biomedical applications. This paper compares the results obtained from these two methods on five gelatin phantoms of different concentrations (5%, 7.5%, 10%, 12.5% and 15%). The concentrations are chosen because the elasticity of such gelatin phantoms is close to that of tissue types such as skin. The results show that both the surface wave method and the static spherical indentation method produce the same values for shear elasticity. For example, the shear elasticities measured by the surface wave method are 1.51, 2.75, 5.34, 6.90 and 8.40 kPa on the five phantoms, respectively. In addition, by studying the dispersion curve of the surface wave speed, shear viscosity can be extracted. The measured shear viscosities are 0.00, 0.00, 0.13, 0.39 and 1.22 Pa.s on the five phantoms, respectively. The results also show that the shear elasticity of the gelatin phantoms increases linearly with their prepared concentrations. The linear regressions between concentration and shear elasticity have R2 values larger than 0.98 for both methods.  相似文献   
88.
89.
Instrumented indentation is a popular technique to extract the material properties of small scale structures. The uniqueness and sensitivity to experimental errors determine the practical usefulness of such experiments. Here, a method to identify test techniques that minimizes sensitivity to experimental erros is in indentation experiments developed. The methods are based on considering “shape functions,” which are sets of functions that describe the force–displacement relationship obtained during the indentation test. The concept of condition number is used to investigate the relative reliability of various possible dual indentation techniques. Interestingly, it was found that many dual indentation techniques can be as unreliable as single indentation techniques. Sensitivity analyses were employed for further understanding of the uniqueness and sensitivity to experimental errors of indentation techniques. The advantage of the Monte Carlo approach over other procedures is established. Practical guidelines regarding the selection of shape functions of force–displacement relationship and geometric parameters, while carrying out indentation analysis are provided. The results suggest that indentation experiments need to be very accurate to extract reliable material properties.  相似文献   
90.
Three-dimensional finite element analysis was used to study the effect of the angle between the loading direction and the axisymmetric direction on the indentation behavior of a transversely isotropic piezoelectric half-space by a cylindrical indenter of flat end. Two cases were considered in the analysis, which included (a) the indentation by an insulating indenter, and (b) the indentation by a conducting indenter. Both the indentation load and the indentation-induced potential were found to be proportional to the indentation depth. Using the simulation results and the analytical relationship for the indentation by a rigid, insulating indenter, semi-analytical relationships were developed between the indentation load and the indentation depth and between the indentation-induced potential on the indenter and the indentation depth for the conducting indenter, respectively. The proportionality between the indentation-induced potential and the indentation depth is only a function of the angle between the loading direction and the poling direction, independent of the type of indenters, which may be used to measure the relative direction of the loading axis to the axisymmetric axis of transversely piezoelectric materials from the indentation test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号