首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   377篇
  免费   7篇
  国内免费   46篇
化学   125篇
力学   149篇
综合类   2篇
数学   29篇
物理学   125篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   16篇
  2019年   9篇
  2018年   3篇
  2017年   27篇
  2016年   13篇
  2015年   20篇
  2014年   14篇
  2013年   29篇
  2012年   17篇
  2011年   21篇
  2010年   21篇
  2009年   22篇
  2008年   24篇
  2007年   28篇
  2006年   23篇
  2005年   14篇
  2004年   9篇
  2003年   19篇
  2002年   13篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   11篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
11.
合成了氯代1-(2-羟乙基)-3-甲基咪唑离子液体[He MIM]Cl、溴代1-乙胺基-3-甲基咪唑离子液体[Ae MIM]Br和氯代1-羧乙基-3-甲基咪唑离子液体[Ce MIM]Cl 3种功能化咪唑离子液体,并分别进行了红外与氢核磁结构表征.然后用3种离子液体液化木粉,液化3 h后向体系直接加入苯酚、甲醛和氢氧化钠,制备酚醛复合材料,并采用FTIR、XRD、DSC和SEM对酚醛复合材料进行结构、性能与形貌测试,研究离子液体种类对木粉液化率及酚醛树脂性能的影响.结果表明,离子液体及其液化木粉产物制备的酚醛复合材料性能得到明显改善.[Ce MIM]Cl液化效果最好,90℃液化率高达24.6%,当[Ce MIM]Cl与木粉质量比为10∶1时,制备的酚醛复合材料的游离醛释放量由原来的3.64%降低到0.92%.离子液体[Ae MIM]Br能将酚醛复合材料的冲击强度由原来的0.93 k J/m2提高到6.96 k J/m2,而[Ae MIM]Br及其液化的木粉产物制备的酚醛复合材料拉伸强度从原来的3.28 MPa提高到9.70 MPa.  相似文献   
12.
The acceleration Severity Index (ASI), described in European Standard EN12767 (The passive safety of support structures for road equipment. Requirements, classification and the test method) is regarded as the most important indicator of impact on the occupants. The requirements for experiments are described, having in mind that the results depend on many factors. One of them is the selection of a vehicle to be used in the crash test. To perform numerical vehicle crash simulation, the finite-element models of permanent road equipment support structures were developed using the LS Dyna software available. To examine the response of the vehicle upon the impact, the acceleration severity index curves were calculated and visualised in Matlab.  相似文献   
13.
The intriguing multi‐ligand compound [Cu(IMI)4Cl]Cl ( 1 ) with the ligand imidazole (IMI) was synthesized and characterized by elemental analysis and FT‐IR spectroscopy. The crystal structure was determined by X‐ray single crystal diffraction and the crystallographic data showed that the compound belongs to the monoclinic P21/n space group [α = 8.847(2) Å, b = 13.210(3) Å, c = 13.870(3) Å, and β = 90.164(3)°]. Furthermore, the CuII ion is five‐coordinated by four nitrogen atoms from four imidazole ligands and a chlorine atom. The thermal decomposition mechanism was determined based on differential scanning calorimetry (DSC) and thermogravimetric (TG‐DTG) analysis. The non‐isothermal kinetics parameters were calculated by the Kissinger's method and Ozawa's method, respectively. The energy of combustion, enthalpy of formation, critical temperature of thermal explosion, entropy of activation (ΔS), enthalpy of activation (ΔH), and free energy of activation (ΔG) were measured and calculated.  相似文献   
14.
Hopkinson non-penetrating low-speed impact test was carried out on Kevlar flexible fabrics. The impact basin was formed by the clay on the back of the fabric, and the ultimate deformation of the fabric was recorded completely. The 3D shape of the clay impact basin was measured by fringe projection profilometry and converted into the impact basin volume. At the same time, the relationship between the indentation volume and the deformation energy of the clay was calibrated using the clay intrusion test. The clay impact basin volume is then converted into the residual energy of the flexible fabric subjected to the low-speed impact, and a new index of the impact basin volume is established to evaluate the energy absorption efficiency of fabric under the low-speed impact. Finally, combined with the deformation of single-layer fabric, the stress wave propagation in the impact deformation process of fabric is discussed, which is helpful to understand the impact energy absorption mechanism of flexible fabric.  相似文献   
15.
In this work, we present the modeling of the peak deceleration (PD) using data of the experimental drop test. Specimens with different thicknesses and areas tested in the drop test device which has adaptable height and weight. In the empirical modeling of the PD, the thickness, area, drop mass and drop height considered as separable functions. An analytical model and Neural Network (NN) was used as the empirical models. Further, the stress on the material was calculated using differential equations and the Finite Element Method (FEM). The Obtained PD from the experimental test, analytical and NN models was converted to the stress on the material using a derived differential equation. Finally, the best model for analyzing the PD and Stress on the material was presented.  相似文献   
16.
Flax-PP based thermally bonded roving (TBR) has a unique structure where the flax fibres remain twist-free and fully aligned along the roving axis. The present study describes an experimental investigation on the low velocity impact (LVI) behaviour of the TBR based woven fabric composites and compares the same with plain woven glass fabric reinforced PP composites (GRPC). Two different fabric architectures namely plain woven (PW) and unidirectional (UD) are fabricated using flax/PP based TBR. These TBR based woven fabrics and the glass fabric/PP sheets are consolidated in a compression moulding machine and the resultant composite-laminates are tested for their LVI behaviour. The impact test results revealed that the glass/PP composites absorb more energy and exhibit a higher peak load than both TBR based PW and UD fabric composites. However, the specific load and energy of all flax/PP composites are higher than the glass/PP composite. The damage tolerance of all composite laminates are evaluated by comparing their flexural strength before and after the impact. It is observed that the proportionate loss in flexural strength due to impact thrust is larger in case of glass/PP composites than all flax-PP composites.  相似文献   
17.
This paper presents a method for the non-destructive inspection and quantitative comparison of low-velocity impact damage in thermoplastic and thermoset composites. X-ray microscope (XRM) computed tomography is used to analyse the three-dimensional internal damage in carbon fibre/poly-ether-ether-ketone (AS4/PEEK) and carbon fibre/epoxy (CCF300/Epoxy) laminates. With the materials and testing conditions used, it was shown that thermoplastic composites have better interlaminar and intralaminar properties, and the following quantitative conclusions were drawn. Under the same impact energy, the maximum contact force of AS4/PEEK laminate was approximately twice that of CCF300/Epoxy laminate. Dissection of the reconstructed XRM volume along a characteristic slicing surface showed that AS4/PEEK had less internal damage than CCF300/epoxy. When the impact energy was 15 J, the XRM results showed that the sum of delamination areas between each ply in AS4/PEEK was only 9% of that in CCF300/Epoxy, whereas the ultrasonic C-scan results showed that the total delamination area of AS4/PEEK was 54.78% of that of CCF300/Epoxy.  相似文献   
18.
采用TEM和UV-Vis等测试手段表征了金红石型纳米级TiO2和体相TiO2的性能特征;通过熔融共混法分别制备了PP/纳米级TiO2/POE和PP/体相TiO2/POE复合材料,采用GB/T16422·2-1999所述的塑料实验室光源暴露实验方法,用氙灯气候试验机对纯PP和复合材料进行28天人工加速老化.结果表明,二氧化钛粒子在PP/POE基体中分散性良好,而纳米粒子对PP/POE基体具有增韧作用;改性后的两类复合材料均具有优异的抗老化性能,而PP/(1·0wt%)纳米级TiO2/POE复合材料的抗老化性能更加优异,其加速老化28天后的无缺口冲击强度达到80·45kJ·m-2,比纯PP提高4倍多,而同期加速老化28天后的PP/(1·0wt%)体相TiO2/POE复合材料的无缺口冲击强度只有47·88kJ·m-2;对纯PP老化过程中的羰基指数和冲击性能的变化情况进行了分析,发现二者近似成线性关系,其相关系数r在0·9以上.  相似文献   
19.
20.
Organoclay-modified hydroxylterminated polysulfone (PSF)/epoxy interpenetrating network nanocomposites (oM-PSF/EP nanocomposites) were prepared by adding organophilic montmorillonite (oMMT) to interpenetrating polymer networks (IPNs) of polysulfone and epoxy resin (PSF/EP) using diaminodiphenylmethane (DDM) as curing agent.The mechanical properties like tensile strength,tensile modulus,flexural strength,flexural modulus and impact properties of the nanocomposites were studied as per ASTM standards.Differ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号