首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   5篇
  国内免费   4篇
化学   12篇
力学   6篇
数学   175篇
物理学   57篇
  2024年   4篇
  2023年   4篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2019年   13篇
  2018年   9篇
  2017年   8篇
  2016年   13篇
  2015年   3篇
  2014年   14篇
  2013年   44篇
  2012年   2篇
  2011年   12篇
  2010年   13篇
  2009年   13篇
  2008年   8篇
  2007年   14篇
  2006年   8篇
  2005年   12篇
  2004年   3篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1977年   1篇
  1969年   1篇
排序方式: 共有250条查询结果,搜索用时 15 毫秒
161.

We show that for the binomial process (or Bernoulli random walk) the orthogonal functionals constructed in Kroeker, J.P. (1980) "Wiener analysis of functionals of a Markov chain: application to neural transformations of random signals", Biol. Cybernetics 36 , 243-248, [14] for Markov chains can be expressed using the Krawtchouk polynomials, and by iterated stochastic integrals. This allows to construct a chaotic calculus based on gradient and divergence operators and structure equations, and to establish a Clark representation formula. As an application we obtain simple infinite dimensional proofs of covariance identities on the discrete cube.  相似文献   
162.
Tapered Covariance: Bayesian Estimation and Asymptotics   总被引:1,自引:0,他引:1  
The method of maximum tapered likelihood has been proposed as a way to quickly estimate covariance parameters for stationary Gaussian random fields. We show that under a useful asymptotic regime, maximum tapered likelihood estimators are consistent and asymptotically normal for covariance models in common use. We then formalize the notion of tapered quasi-Bayesian estimators and show that they too are consistent and asymptotically normal. We also present asymptotic confidence intervals for both types of estimators and show via simulation that they accurately reflect sampling variability, even at modest sample sizes. Proofs, an example, and detailed derivations are provided in the supplementary materials, available online.  相似文献   
163.
Kalman filtering-smoothing is a fundamental tool in statistical time-series analysis. However, standard implementations of the Kalman filter-smoother require O(d3) time and O(d2) space per time step, where d is the dimension of the state variable, and are therefore impractical in high-dimensional problems. In this article we note that if a relatively small number of observations are available per time step, the Kalman equations may be approximated in terms of a low-rank perturbation of the prior state covariance matrix in the absence of any observations. In many cases this approximation may be computed and updated very efficiently (often in just O(k2d) or O(k2d + kdlog?d) time and space per time step, where k is the rank of the perturbation and in general k ? d), using fast methods from numerical linear algebra. We justify our approach and give bounds on the rank of the perturbation as a function of the desired accuracy. For the case of smoothing, we also quantify the error of our algorithm because of the low-rank approximation and show that it can be made arbitrarily low at the expense of a moderate computational cost. We describe applications involving smoothing of spatiotemporal neuroscience data. This article has online supplementary material.  相似文献   
164.
量测噪声有限记忆在线估计简化算法   总被引:1,自引:0,他引:1  
量测噪声有限记忆在线估计方法通过对新息序列的实时统计计算,更新系统量测噪声阵 R,增强了滤波器的自适应能力。但量测噪声有限记忆在线估计方法需要在每个滤波周期内对量测噪声阵 R 进行估计并更新统计周期内的量测新息,存在着信息统计与数据更新计算量大的不足。针对此问题,提出了一种基于协方差匹配技术的自适应滤波算法,将协方差匹配技术与量测噪声有限记忆在线估计方法相结合,根据协方差匹配结果,选择性统计量测噪声阵 R。仿真结果表明,简化算法可以在保证滤波精度相当的前提下,减小计算量,提高实时性。  相似文献   
165.
    
In this paper, we propose a method for the approximation of the solution of high-dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation formats. The method can be seen as a perturbation of a minimal residual method with a measure of the residual corresponding to the error in a specified solution norm. The residual norm can be designed such that the resulting low-rank approximations are optimal with respect to particular norms of interest, thus allowing to take into account a particular objective in the definition of reduced order approximations of high-dimensional problems. We introduce and analyze an iterative algorithm that is able to provide an approximation of the optimal approximation of the solution in a given low-rank subset, without any a priori information on this solution. We also introduce a weak greedy algorithm which uses this perturbed minimal residual method for the computation of successive greedy corrections in small tensor subsets. We prove its convergence under some conditions on the parameters of the algorithm. The proposed numerical method is applied to the solution of a stochastic partial differential equation which is discretized using standard Galerkin methods in tensor product spaces.https://doi.org/10.1051/m2an/2014019  相似文献   
166.
167.
Caddemi  S.  Muscolino  G. 《Meccanica》1998,33(1):1-10
The pre-envelope process is a complex process whose statistics are strictly related to the statistics of the envelope of a given process. The paper deals with the evaluation of the covariances of the pre-envelope output process of classically and nonclassically damped linear systems subjected to stationary and nonstationary white and nonwhite pre-envelope input process. More precisely, the pre-envelope covariances for nonwhite complex input processes are evaluated as solution of a set of first order differential equations. Furthermore, in the paper the pre-envelope of the white input process is defined, and for such input the pre-envelope covariance differential equations are determined by means of an extension to the complex field of the stochastic differential calculus. Sommario.Il processo 'pre-inviluppo' é un processo complesso i cui parametri statistici sono strettamente legati a quelli del processo 'inviluppo'. Il lavoro riguarda la valutazione delle covarianze del processo pre–inviluppo della risposta di sistemi dinamici classicamente e non classicamente smorzati soggetti a processi pre–inviluppo bianchi e filtrati, stazionari e non stazionari. Piprecisamente, nel caso di un processo filtrato pre–inviluppo le covarianze della risposta sono valutate come soluzione di un sistema di equazioni differenziali del primo ordine. Inoltre, nel lavoro definito il processo pre–inviluppo di un processo bianco e per tale caso sono presentate le equazioni differenziali delle covarianze della risposta ottenute attraverso l'estensione al campo complesso del classico calcolo differenziale stocastico.  相似文献   
168.
In the study of chaotic behaviour of systems of many hard spheres, Lyapunov exponents of small absolute values exhibit interesting characteristics leading to speculations about connections to non-equilibrium statistical mechanics. Analytical approaches to these exponents so far can be divided into two groups, macroscopically oriented approaches, using kinetic theory or hydrodynamics, and more microscopically oriented random-matrix approaches in quasi-one-dimensional systems. In this paper, I present an approach using random matrices and weak-disorder expansion in an arbitrary number of dimensions. Correlations between subsequent collisions of a particle are taken into account. It is shown that the results are identical to those of a previous approach based on an extended Enskog equation. I conclude that each approach has its merits, and provides different insights into the approximations made, which include the Stoßzahlansatz, the continuum limit, and the long wavelength approximation. The comparison also gives insight into possible connections between Lyapunov exponents and fluctuations.  相似文献   
169.
本文是二次型及其定性理论在经济管理中的一些应用的归纳总结,包括多元函数极值存在的充分条件、线性回归模型中参数估计的最小二乘法、随机向量及其线性函数的数字特征、线性组合预测模型的误差平方和以及线性组合投资收益率的方差(风险)等。  相似文献   
170.
The time-evolving precision matrix of a piecewise-constant Gaussian graphical model encodes the dynamic conditional dependency structure of a multivariate time-series. Traditionally, graphical models are estimated under the assumption that data are drawn identically from a generating distribution. Introducing sparsity and sparse-difference inducing priors, we relax these assumptions and propose a novel regularized M-estimator to jointly estimate both the graph and changepoint structure. The resulting estimator possesses the ability to therefore favor sparse dependency structures and/or smoothly evolving graph structures, as required. Moreover, our approach extends current methods to allow estimation of changepoints that are grouped across multiple dependencies in a system. An efficient algorithm for estimating structure is proposed. We study the empirical recovery properties in a synthetic setting. The qualitative effect of grouped changepoint estimation is then demonstrated by applying the method on a genetic time-course dataset. Supplementary material for this article is available online.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号