首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2197篇
  免费   71篇
  国内免费   151篇
化学   632篇
晶体学   26篇
力学   418篇
综合类   1篇
数学   620篇
物理学   722篇
  2024年   3篇
  2023年   21篇
  2022年   42篇
  2021年   35篇
  2020年   45篇
  2019年   30篇
  2018年   34篇
  2017年   33篇
  2016年   47篇
  2015年   59篇
  2014年   81篇
  2013年   181篇
  2012年   106篇
  2011年   231篇
  2010年   141篇
  2009年   185篇
  2008年   164篇
  2007年   151篇
  2006年   153篇
  2005年   102篇
  2004年   87篇
  2003年   86篇
  2002年   58篇
  2001年   38篇
  2000年   52篇
  1999年   26篇
  1998年   29篇
  1997年   29篇
  1996年   26篇
  1995年   11篇
  1994年   16篇
  1993年   12篇
  1992年   10篇
  1991年   11篇
  1990年   7篇
  1989年   9篇
  1988年   11篇
  1987年   3篇
  1986年   11篇
  1985年   5篇
  1984年   6篇
  1982年   7篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
  1966年   1篇
排序方式: 共有2419条查询结果,搜索用时 15 毫秒
991.
以高温煤焦油为原料制备煤精制软沥青及其族组成,再炭化制备半焦。通过元素分析和红外光谱分析杂原子氮、硫的分布和热稳定性。  相似文献   
992.
We determine the L p spectrum of the Laplace-Beltrami operator on certain complete locally symmetric spaces M whose universal covering X is a symmetric space of non-compact type with rank one. More precisely, we show that the L p spectra of M and X coincide if the fundamental group of M is small and if the injectivity radius of M is bounded away from zero. In the L 2 case, the restriction on the injectivity radius is not needed.   相似文献   
993.
994.
Stationary combustion regimes, their linear stability and extinction limits of stretched premixed flames in a narrow gap between two heat conducting plates are studied by means of numerical simulations in the framework of one-dimensional thermal-diffusion model with overall one-step reaction. Various stationary combustion modes including normal flame (NF), near-stagnation plane flame (NSF), weak flame (WF) and distant flame (DF) are detected and found to be analogous to the same-named regimes of conventional counterflow flames. For the flames stabilized in the vicinity of stagnation plane at moderate and large stretch rates (which are NF, NSF and WF) the effect of channel walls is basically reduced to additional heat loss. For distant flame characterized by large flame separation distance and small stretch rates intensive interphase heat transfer and heat recirculation are typical. It is shown that in mixture content / stretch rate plane the extinction limit curve has ε-shape, while for conventional counterflow flames it is known to be C-shaped. This result is quite in line with recent experimental findings and is explained by extension of extinction limits at small stretch rates at the expense of heat recirculation. Analysis of the numerical results makes possible to reveal prime mechanisms of flame quenching on different branches of ε-shaped extinction limit curve. Namely, two upper limits are caused by stretch and heat loss. These limits are direct analogs of the upper and lower limits on conventional C-shaped curve. Two other limits are related with weakening of heat recirculation and heat dissipation to the burner. Thus, the present study provides a satisfactory explanation for the recent experimental observations of stretched flames in narrow channel.  相似文献   
995.
Non-contact temperature measurement in a nuclear reactor is still a huge challenge because of the numerous constraints to consider, such as the high temperature, the steam atmosphere, and irradiation. A device is currently developed at CEA to study the nuclear fuel claddings behavior during a Loss-of-Coolant Accident. As a first step of development, we designed and tested an optical pyrometry procedure to measure the surface temperature of nuclear fuel claddings without any contact, under air, in the temperature range 700–850 °C. The temperature of Zircaloy-4 cladding samples was retrieved at various temperature levels. We used Multispectral Radiation Thermometry with the hypothesis of a constant emissivity profile in the spectral ranges 1–1.3 µm and 1.45–1.6 µm. To allow for comparisons, a reference temperature was provided by a thermocouple welded on the cladding surface. Because of thermal losses induced by the presence of the thermocouple, a heat transfer simulation was also performed to estimate the bias. We found a good agreement between the pyrometry measurement and the temperature reference, validating the constant emissivity profile hypothesis used in the MRT estimation. The expanded measurement uncertainty (k = 2) of the temperature obtained by the pyrometry method was ±4 °C, for temperatures between 700 and 850 °C. Emissivity values, between 0.86 and 0.91 were obtained.  相似文献   
996.
We investigate the coherent phonon thermal transport at low temperatures in Gold nanowires, in order to study the effects of scattering on the lattice thermal conductivity. Three types of shaped joint nanostructures are employed in our calculation. We present a detailed study of the thermal conductance as a function of the temperature for different shaped joint. This is done by solving the phonon Boltzmann transport equation in the ballistic regime and calculating the transmission rates of the vibration modes through the consideration of the phonon group velocity modification in the system. The transmission properties are calculated by use of the matching method in the harmonic approximation with nearest and next nearest neighbor force constants. The results show that the transmission probabilities depend on the type of joint nanostructure. The pronounced fluctuations of the transmission spectra as a function of the frequency can be understood as Fano resonances. It is also found that the behavior of the thermal conductance versus temperature is qualitatively different for different nanostructures and depends sensitively on the width of the shaped joint.  相似文献   
997.
Closed-form solutions are derived to the problem of an edge dislocation or a steady line heat source at the center of a multicoated circular inhomogeneity by using the complex variable method and the transfer matrix method. The problem is reduced to a single linear algebraic equation which determines the single unknown real coefficient appearing in the complex stress functions defined in the surrounding matrix. The other unknown real coefficient in the complex stress functions in the inhomogeneity can then be conveniently determined.  相似文献   
998.
In this paper, a numerical method is presented to investigate the Electrohydrodynamic effect using micropolar fluid model. The EHD flow for the forced convection heat transfer in a smooth channel is simulated. The computed results were compared with the fully turbulent flow approach. It is found that the micropolar model can be used to simulate the hydraulically laminar flow. In addition, the heat transfer enhancement has the same efficiency for both the micropolar and the k-ε models. The change of the applied voltage and the Reynolds number caused various deviations of the results obtained from the two approaches up to a maximum of 20.79%, and a minimum of 0.03%.  相似文献   
999.
We study the model, describing a nonlinear diffusion process (or a heat propagation process) in an inhomogeneous medium with non-stationary absorption (or source). We found tree submodels of the original model of the nonlinear diffusion process (or the heat propagation process), having different symmetry properties. We found all invariant submodels. All essentially distinct invariant solutions describing these invariant submodels are found either explicitly, or their search is reduced to the solution of the nonlinear integral equations. For example, we obtained the invariant solution describing the nonlinear diffusion process (or the heat distribution process) with two fixed "black holes", and the invariant solution describing the nonlinear diffusion process (or the heat distribution process) with the fixed "black hole" and the moving "black hole". The presence of the arbitrary constants in the integral equations, that determine these solutions provides a new opportunities for analytical and numerical study of the boundary value problems for the received submodels, and, thus, for the original model of the nonlinear diffusion process (or the heat distribution process). For the received invariant submodels we are studied diffusion processes (or heat distribution process) for which at the initial moment of the time at a fixed point are specified or a concentration (a temperature) and its gradient, or a concentration (a temperature) and its rate of change. Solving of boundary value problems describing these processes are reduced to the solving of nonlinear integral equations. We are established the existence and uniqueness of solutions of these boundary value problems under some additional conditions. The obtained results can be used to study the diffusion of substances, diffusion of conduction electrons and other particles, diffusion of physical fields, propagation of heat in inhomogeneous medium.  相似文献   
1000.
Cooling methods are needed for turbine blade tips to ensure a long durability and safe operation. A common way to cool a tip is to use serpentine passages with 180-deg turn under the blade tip-cap taking advantage of the three-dimensional turning effect and impingement like flow. Improved internal convective cooling is therefore required to increase the blade tip lifetime. In the present study, augmented heat transfer of an internal blade tip with pin-fin arrays has been investigated numerically using a conjugate heat transfer method. The computational domain includes the fluid region and the solid pins as well as the tip regions. Turbulent convective heat transfer between the fluid and pins, and heat conduction within pins and tip are simultaneously computed. The main objective of the present study is to observe the effect of the pin material on heat transfer enhancement of the pin-finned tips. It is found that due to the combination of turning, impingement and pin-fin crossflow, the heat transfer coefficient of a pin-finned tip is a factor of 2.9 higher than that of a smooth tip at the cost of an increased pressure drop by less than 10%. The usage of metal pins can reduce the tip temperature effectively and thereby remove the heat load from the tip. Also, it is found that the tip heat transfer is enhanced even by using insulating pins having low thermal conductivity at low Reynolds numbers. The comparisons of overall performances are also included.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号