首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23029篇
  免费   1831篇
  国内免费   885篇
化学   529篇
晶体学   40篇
力学   3436篇
综合类   250篇
数学   17366篇
物理学   4124篇
  2025年   84篇
  2024年   289篇
  2023年   327篇
  2022年   211篇
  2021年   330篇
  2020年   638篇
  2019年   622篇
  2018年   588篇
  2017年   590篇
  2016年   586篇
  2015年   520篇
  2014年   973篇
  2013年   2212篇
  2012年   1104篇
  2011年   1354篇
  2010年   1051篇
  2009年   1408篇
  2008年   1420篇
  2007年   1288篇
  2006年   1187篇
  2005年   965篇
  2004年   861篇
  2003年   874篇
  2002年   835篇
  2001年   666篇
  2000年   658篇
  1999年   608篇
  1998年   554篇
  1997年   488篇
  1996年   360篇
  1995年   257篇
  1994年   256篇
  1993年   192篇
  1992年   148篇
  1991年   120篇
  1990年   112篇
  1989年   81篇
  1988年   70篇
  1987年   72篇
  1986年   57篇
  1985年   76篇
  1984年   114篇
  1983年   59篇
  1982年   85篇
  1981年   78篇
  1980年   68篇
  1979年   61篇
  1978年   58篇
  1977年   36篇
  1976年   32篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
    
In this paper, we present a discontinuous Galerkin formulation of the shallow‐water equations. An orthogonal basis is used for the spatial discretization and an explicit Runge–Kutta scheme is used for time discretization. Some results of second‐order anisotropic adaptive calculations are presented for dam breaking problems. The adaptive procedure uses an error indicator that concentrates the computational effort near discontinuities like hydraulic jumps. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
192.
    
An efficient way of obtaining travelling waves in a periodic fluid system is described and tested. We search for steady states in a reference frame travelling at the wave phase velocity using a first‐order pseudospectral semi‐implicit time scheme adapted to carry out the Newton's iterations. The method is compared to a standard Newton–Raphson solver and is shown to be highly efficient in performing this task, even when high‐resolution grids are used. This method is well suited to three‐dimensional calculations in cylindrical or spherical geometries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
193.
    
The aeroelastic instability of composite wings modeled as Circumferentially Asymmetric Stiffness (CAS) thin-walled composite beams with closed cross-section is carried out. The objective has been to investigate the effects of different assumptions of constitutive equations on the aeroelastic instability behavior. Non-classical effects such as restrained warping and transverse shear are included in the beam model. The unsteady incompressible airloads are presented using Wagner׳s function. A comparison of the results based on different constitutive equations for a number of configurations including three types of stacking sequence for a box cross-section and two types of stacking sequence for a biconvex cross-section, is performed. The effects of the values of twist as well as twist-bending stiffness coefficients have been studied carefully on the results. As an outcome of this investigation it is revealed that the different choices of structural constitutive equations which result in different values of stiffness quantities; namely, twist and twist-bending stiffness, significantly affect the predicted results. For example, a difference of up to 45% in the aeroelastic critical speed has been observed between different sets of constitutive equations in some cases.  相似文献   
194.
    
A new mathematical algorithm is proposed to address the essential details of vertical distributions of horizontal velocity for one‐dimensional steady open‐channel flow. This new algorithm comprises a system of weighted averaged equations developed from corresponding Reynolds equations by performing weighted average operations instead of conventional depth average operations. It is the system of weighted averaged equations, instead of the vertical grids, that allows for more hydraulic coefficients identifiable. It can be thought of as an extension of the St. Venant equations to address the vertical distributions of horizontal velocities, as well as the water surface profiles. To avoid the difficult expansion of governing partial differential equations in high order, an indirect scheme is proposed to solve hydraulic variables through their weighted average values. The governing partial differential equations are generated by using a variety of weight functions, and the weighted averages of relevant hydraulic variables are taken as the unknown independent variables to be solved first. Then, on the basis of the values and polynomial expansions of these weighted averaged velocities, a system of linear algebraic equations is generated and the unknown hydraulic variables or their coefficients are easily solved. Note that the new model is not proposed to compete with any three‐dimensional models in modeling accuracy or accommodation ability to all conditions. It just provides a valuable option to study the vertical structure of flow in open channels where only essential detail and reasonable accuracy of vertical distributions are required, and the data availability and other conditions limit the application of fully three‐dimensional models. The performance of the model is evaluated with experimental data of flows in two different flumes. It is shown that the model well predicted the velocity profiles of sections along the centerlines of these flumes with reasonable accuracy and essential details of vertical distributions of horizontal velocity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
195.
    
A transversely isotropic linear elastic half‐space with depth wise axis of material symmetry containing a cylindrical cavity of finite length is considered to be under the effect of a time‐harmonic torsion force applied on a ring at an arbitrary depth on the surface of the cylindrical cavity. With the aid of cosine transforms, the boundary value problem for the fundamental solution is reduced to a generalized Cauchy singular integral equation. The Cauchy integral equation involved in this paper is analytically investigated and the final equation is numerically solved with an in‐depth attention. Integral representation of the stress and displacement are obtained, and is shown that their degenerated form to the static problem of isotropic material is coincide with existing solutions in the literature. To investigate the effect of material anisotropy, the results are numerically evaluated and illustrated.  相似文献   
196.
    
In this paper we study solutions of an inverse problem for a global shallow water model controlling its initial conditions specified from the 40‐yr ECMWF Re‐analysis (ERA‐40) data sets, in the presence of full or incomplete observations being assimilated in a time interval (window of assimilation) with or without background error covariance terms. As an extension of the work by Chen et al. (Int. J. Numer. Meth. Fluids 2009), we attempt to obtain a reduced order model of the above inverse problem, based on proper orthogonal decomposition (POD), referred to as POD 4D‐Var for a finite volume global shallow water equation model based on the Lin–Rood flux‐form semi‐Lagrangian semi‐implicit time integration scheme. Different approaches of POD implementation for the reduced inverse problem are compared, including a dual‐weighted method for snapshot selection coupled with a trust‐region POD adaptivity approach. Numerical results with various observational densities and background error covariance operator are also presented. The POD 4‐D Var model results combined with the trust‐region adaptivity exhibit similarity in terms of various error metrics to the full 4D Var results, but are obtained using a significantly lesser number of minimization iterations and require lesser CPU time. Based on our previous and current work, we conclude that POD 4‐D Var certainly warrants further studies, with promising potential of its extension to operational 3‐D numerical weather prediction models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
197.
    
The penalty finite element method for Navier–Stokes equations with nonlinear slip boundary conditions is investigated in this paper. Since this class of nonlinear slip boundary conditions include the subdifferential property, the weak variational formulation is a variational inequality problem of the second kind. Using the penalty finite element approximation, we obtain optimal error estimates between the exact solution and the finite element approximation solution. Finally, we show the numerical results which are in full agreement with the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
198.
    
This paper presents a new simplified grid system that provides local refinement and dynamic adaptation for solving the 2D shallow water equations (SWEs). Local refinement is realized by simply specifying different subdivision levels to the cells on a background uniform coarse grid that covers the computational domain. On such a non‐uniform grid, the structured property of a regular Cartesian mesh is maintained and neighbor information is determined by simple algebraic relationships, i.e. data structure becomes unnecessary. Dynamic grid adaptation is achieved by changing the subdivision level of a background cell. Therefore, grid generation and adaptation is greatly simplified and straightforward to implement. The new adaptive grid‐based SWE solver is tested by applying it to simulate three idealized test cases and promising results are obtained. The new grid system offers a simplified alternative to the existing approaches for providing adaptive mesh refinement in computational fluid dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
199.
    
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time‐dependent varying seabed are included. Thus, high‐order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher‐order models, an extra O(μ2n+2) term (n ∈ ?) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth‐order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor‐corrector scheme with an initialization given by an explicit Runge–Kutta method is also used for the time‐variable integration. Moreover, a CFL‐type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
200.
    
Hermite weighted essentially non‐oscillatory (HWENO) methods were introduced in the literature, in the context of Euler equations for gas dynamics, to obtain high‐order accuracy schemes characterized by high compactness (e.g. Qiu and Shu, J. Comput. Phys. 2003; 193 :115). For example, classical fifth‐order weighted essentially non‐oscillatory (WENO) reconstructions are based on a five‐cell stencil whereas the corresponding HWENO reconstructions are based on a narrower three‐cell stencil. The compactness of the schemes allows easier treatment of the boundary conditions and of the internal interfaces. To obtain this compactness in HWENO schemes both the conservative variables and their first derivatives are evolved in time, whereas in the original WENO schemes only the conservative variables are evolved. In this work, an HWENO method is applied for the first time to the shallow water equations (SWEs), including the source term due to the bottom slope, to obtain a fourth‐order accurate well‐balanced compact scheme. Time integration is performed by a strong stability preserving the Runge–Kutta method, which is a five‐step and fourth‐order accurate method. Besides the classical SWE, the non‐homogeneous equations describing the time and space evolution of the conservative variable derivatives are considered here. An original, well‐balanced treatment of the source term involved in such equations is developed and tested. Several standard one‐dimensional test cases are used to verify the high‐order accuracy, the C‐property and the good resolution properties of the model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号