首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   599篇
  免费   54篇
  国内免费   77篇
化学   26篇
力学   7篇
综合类   13篇
数学   449篇
物理学   235篇
  2023年   6篇
  2022年   8篇
  2021年   9篇
  2020年   18篇
  2019年   13篇
  2018年   16篇
  2017年   9篇
  2016年   12篇
  2015年   11篇
  2014年   24篇
  2013年   47篇
  2012年   18篇
  2011年   27篇
  2010年   20篇
  2009年   48篇
  2008年   53篇
  2007年   59篇
  2006年   48篇
  2005年   37篇
  2004年   34篇
  2003年   40篇
  2002年   24篇
  2001年   27篇
  2000年   27篇
  1999年   15篇
  1998年   13篇
  1997年   16篇
  1996年   10篇
  1995年   5篇
  1994年   8篇
  1993年   6篇
  1992年   2篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   3篇
  1973年   1篇
排序方式: 共有730条查询结果,搜索用时 20 毫秒
721.
722.
Abstract

In various normed spaces we answer the question of when a given isometry is a square of some isometry. In particular, we consider (real and complex) matrix spaces equipped with unitarily invariant norms and unitary congruence invariant norms, as well as some infinite dimensional spaces illustrating the difference between finite and infinite dimensions.  相似文献   
723.
矩阵方程A×B=D是教学、理论研究和工程实践中常见的一种矩阵方程.给出了A×B=D具有(R,S)-斜对称矩阵解的充分必要条件,及其解存在条件下全体解集合Sx的表达式.此外,还讨论了任意给定矩阵(X)在仿射子空间Sx中的最优近似解,并给出了最优解的显示表达式.  相似文献   
724.
单模光子在光纤中运动的极化及几何相因子   总被引:3,自引:3,他引:3       下载免费PDF全文
研究在光纤中运动的单模光子在固定系中的自旋算符表式,在将螺旋度当作不变量的基础上构造使光纤中光子极化面转动的有效哈密顿量,运用与不变量有关的幺正变换方法,获得了光纤中运动光子演化方程(含时薛定谔方程)的精确解,并研究光子在光纤中运动的极化问题,包括几何相因子、总哈密顿量和波函数演化算符的显式. 关键词: 几何相因子 光纤 不变量 幺正变换  相似文献   
725.
726.
Let S = {x1, x2,..., xn} be a set of distinct positive integers. The n x n matrix (S) whose i, j-entry is the greatest common divisor (xi, xj) of xi and xj is called the GCD matrix on S. A divisor d of x is said to be a unitary divisor of x if (d, x/d) = 1. The greatest common unitary divisor (GCUD) matrix (S**) is defined analogously. We show that if S is both GCD-closed and GCUD-closed, then det(S**) ≥ det(S), where the equality holds if and Only if (S**) = (S).  相似文献   
727.
We investigate the general condition for an operator to be unitary. This condition is introduced according to the definition of the position operator in curved space. In a particular case, we discuss the concept of translation operator in curved space followed by its relation with an anti-Hermitian generator. Also we introduce a universal formula for adjoint of an arbitrary linear operator. Our procedure in this paper is totally different from others, as we explore a general approach based only on the algebra of the operators. Our approach is only discussed for the translation operators in one-dimensional space and not for general operators.  相似文献   
728.
Let ( L , Γ ) $(\mathfrak {L},\Gamma )$ be an isometric boundary pair associated with a closed symmetric linear relation T in a Krein space H $\mathfrak {H}$ . Let M Γ $M_\Gamma$ be the Weyl family corresponding to ( L , Γ ) $(\mathfrak {L},\Gamma )$ . We cope with two main topics. First, since M Γ $M_\Gamma$ need not be (generalized) Nevanlinna, the characterization of the closure and the adjoint of a linear relation M Γ ( z ) $M_\Gamma (z)$ , for some z C R $z\in \mathbb {C}\setminus \mathbb {R}$ , becomes a nontrivial task. Regarding M Γ ( z ) $M_\Gamma (z)$ as the (Shmul'yan) transform of z I $zI$ induced by Γ, we give conditions for the equality in M Γ ( z ) ¯ M Γ ¯ ( z ) ¯ $\overline{M_\Gamma (z)}\subseteq \overline{M_{\overline{\Gamma }}(z)}$ to hold and we compute the adjoint M Γ ¯ ( z ) $M_{\overline{\Gamma }}(z)^*$ . As an application, we ask when the resolvent set of the main transform associated with a unitary boundary pair for T + $T^+$ is nonempty. Based on the criterion for the closeness of M Γ ( z ) $M_\Gamma (z)$ , we give a sufficient condition for the answer. From this result it follows, for example, that, if T is a standard linear relation in a Pontryagin space, then the Weyl family M Γ $M_\Gamma$ corresponding to a boundary relation Γ for T + $T^+$ is a generalized Nevanlinna family; a similar conclusion is already known if T is an operator. In the second topic, we characterize the transformed boundary pair ( L , Γ ) $(\mathfrak {L}^\prime ,\Gamma ^\prime )$ with its Weyl family M Γ $M_{\Gamma ^\prime }$ . The transformation scheme is either Γ = Γ V 1 $\Gamma ^\prime =\Gamma V^{-1}$ or Γ = V Γ $\Gamma ^\prime =V\Gamma$ with suitable linear relations V. Results in this direction include but are not limited to: a 1-1 correspondence between ( L , Γ ) $(\mathfrak {L},\Gamma )$ and ( L , Γ ) $(\mathfrak {L}^\prime ,\Gamma ^\prime )$ ; the formula for M Γ M Γ $M_{\Gamma ^\prime }-M_\Gamma$ , for an ordinary boundary triple and a standard unitary operator V (first scheme); construction of a quasi boundary triple from an isometric boundary triple ( L , Γ 0 , Γ 1 ) $(\mathfrak {L},\Gamma _0,\Gamma _1)$ with ker Γ = T $\ker \Gamma =T$ and T 0 = T 0 $T_0=T^*_0$ (second scheme, Hilbert space case).  相似文献   
729.
730.
This paper describes and develops a fast and accurate path following algorithm that computes the field of values boundary curve F ( A ) $$ \partial F(A) $$ for every conceivable complex or real square matrix A $$ A $$ . It relies on the matrix flow decomposition algorithm that finds a proper block-diagonal flow representation for the associated hermitean matrix flow A ( t ) = cos ( t ) H + sin ( t ) K $$ {\mathcal{F}}_A(t)=\cos (t)H+\sin (t)K $$ under unitary similarity if that is possible. Here A ( t ) $$ {\mathcal{F}}_A(t) $$ is the 1-parameter-varying linear combination of the real and skew part matrices H = ( A + A ) / 2 $$ H=\left(A+{A}^{\ast}\right)/2 $$ and K = ( A A ) / ( 2 i ) $$ K=\left(A-{A}^{\ast}\right)/(2i) $$ of A $$ A $$ . For indecomposable matrix flows, A ( t ) $$ {\mathcal{F}}_A(t) $$ has just one block and the ZNN based field of values algorithm works with A ( t ) $$ {\mathcal{F}}_A(t) $$ directly. For decomposing flows A ( t ) $$ {\mathcal{F}}_A(t) $$ , the algorithm decomposes the given matrix A $$ A $$ unitarily into block-diagonal form U A U = diag ( A j ) $$ {U}^{\ast } AU=\operatorname{diag}\left({A}_j\right) $$ with j > 1 $$ j>1 $$ diagonal blocks A j $$ {A}_j $$ whose individual sizes add up to the size of A $$ A $$ . It then computes the field of values boundaries separately for each diagonal block A j $$ {A}_j $$ using the path following ZNN eigenvalue method. The convex hull of all sub-fields of values boundary points F ( A j ) $$ \partial F\left({A}_j\right) $$ finally determines the field of values boundary curve correctly for decomposing matrices A $$ A $$ . The algorithm removes standard restrictions for path following FoV methods that generally cannot deal with decomposing matrices A $$ A $$ due to possible eigencurve crossings of A ( t ) $$ {\mathcal{F}}_A(t) $$ . Tests and numerical comparisons are included. Our ZNN based method is coded for sequential and parallel computations and both versions run very accurately and fast when compared with Johnson's Francis QR eigenvalue and Bendixson rectangle based method and compute global eigenanalyses of A ( t k ) $$ {\mathcal{F}}_A\left({t}_k\right) $$ for large discrete sets of angles t k [ 0 , 2 π ] $$ {t}_k\in \left[0,2\pi \right] $$ more slowly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号