首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   16篇
  国内免费   5篇
化学   1篇
力学   2篇
综合类   4篇
数学   94篇
物理学   100篇
  2022年   11篇
  2021年   31篇
  2020年   7篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   4篇
  2013年   17篇
  2012年   5篇
  2011年   13篇
  2010年   13篇
  2009年   9篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   11篇
  2002年   9篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
111.
This study adopts the autoregressive conditional jump intensity (ARJI) model proposed by Chan and Maheu [J. Business Econ. Stat. 20 (2002) 377–389] to investigate the impact of news on SIMEX-Nikkei 225 and CME-Nikkei 225 (regards it as the twins). Empirical results demonstrate that the twins were captured by responses to various events; moreover, the twins have distinct jump intensity and risk. Finally, this investigation evaluates the lead–lag relationship between returns and jump behavior by the Granger causality test. Returns are based on unidirectional causality from two futures (the twins) to spot and feedback causality between the twins. Jump intensity reveal feedback causality between spot and the CME-Nikkei 225 and unidirectional causality from the CME-Nikkei 225 to in SIMEX-Nikkei 225.  相似文献   
112.
This study examines the dynamic relationship between the major stock indices of the US, Japan, France and the UK by using the non-linear Granger-causality test. The empirical evidence indicates that there is a strong bi-directional non-linear causal relationship between the US and the others. While the US stock market Granger causes significantly the other considered stock markets, Japan and France do not linear Granger cause the US, but just the UK does.  相似文献   
113.
Many methods of Granger causality, or broadly termed connectivity, have been developed to assess the causal relationships between the system variables based only on the information extracted from the time series. The power of these methods to capture the true underlying connectivity structure has been assessed using simulated dynamical systems where the ground truth is known. Here, we consider the presence of an unobserved variable that acts as a hidden source for the observed high-dimensional dynamical system and study the effect of the hidden source on the estimation of the connectivity structure. In particular, the focus is on estimating the direct causality effects in high-dimensional time series (not including the hidden source) of relatively short length. We examine the performance of a linear and a nonlinear connectivity measure using dimension reduction and compare them to a linear measure designed for latent variables. For the simulations, four systems are considered, the coupled Hénon maps system, the coupled Mackey–Glass system, the neural mass model and the vector autoregressive (VAR) process, each comprising 25 subsystems (variables for VAR) at close chain coupling structure and another subsystem (variable for VAR) driving all others acting as the hidden source. The results show that the direct causality measures estimate, in general terms, correctly the existing connectivity in the absence of the source when its driving is zero or weak, yet fail to detect the actual relationships when the driving is strong, with the nonlinear measure of dimension reduction performing best. An example from finance including and excluding the USA index in the global market indices highlights the different performance of the connectivity measures in the presence of hidden source.  相似文献   
114.
Causality follows the thermodynamic arrow of time, where the latter is defined by the direction of entropy increase. After a brief review of an earlier version of this article, rooted in classical mechanics, we give a quantum generalization of the results. The quantum proofs are limited to a gas of Gaussian wave packets.  相似文献   
115.
The interaction between the flow of sentiment expressed on blogs and media and the dynamics of the stock market prices are analyzed through an information-theoretic measure, the transfer entropy, to quantify causality relations. We analyzed daily stock price and daily social media sentiment for the top 50 companies in the Standard & Poor (S&P) index during the period from November 2018 to November 2020. We also analyzed news mentioning these companies during the same period. We found that there is a causal flux of information that links those companies. The largest fraction of significant causal links is between prices and between sentiments, but there is also significant causal information which goes both ways from sentiment to prices and from prices to sentiment. We observe that the strongest causal signal between sentiment and prices is associated with the Tech sector.  相似文献   
116.
This work is about observational causal discovery for deterministic and stochastic dynamic systems. We explore what additional knowledge can be gained by the usage of standard conditional independence tests and if the interacting systems are located in a geodesic space.  相似文献   
117.
Graphs/networks have become a powerful analytical approach for data modeling. Besides, with the advances in sensor technology, dynamic time-evolving data have become more common. In this context, one point of interest is a better understanding of the information flow within and between networks. Thus, we aim to infer Granger causality (G-causality) between networks’ time series. In this case, the straightforward application of the well-established vector autoregressive model is not feasible. Consequently, we require a theoretical framework for modeling time-varying graphs. One possibility would be to consider a mathematical graph model with time-varying parameters (assumed to be random variables) that generates the network. Suppose we identify G-causality between the graph models’ parameters. In that case, we could use it to define a G-causality between graphs. Here, we show that even if the model is unknown, the spectral radius is a reasonable estimate of some random graph model parameters. We illustrate our proposal’s application to study the relationship between brain hemispheres of controls and children diagnosed with Autism Spectrum Disorder (ASD). We show that the G-causality intensity from the brain’s right to the left hemisphere is different between ASD and controls.  相似文献   
118.
The heterogeneous graphical Granger model (HGGM) for causal inference among processes with distributions from an exponential family is efficient in scenarios when the number of time observations is much greater than the number of time series, normally by several orders of magnitude. However, in the case of “short” time series, the inference in HGGM often suffers from overestimation. To remedy this, we use the minimum message length principle (MML) to determinate the causal connections in the HGGM. The minimum message length as a Bayesian information-theoretic method for statistical model selection applies Occam’s razor in the following way: even when models are equal in their measure of fit-accuracy to the observed data, the one generating the most concise explanation of data is more likely to be correct. Based on the dispersion coefficient of the target time series and on the initial maximum likelihood estimates of the regression coefficients, we propose a minimum message length criterion to select the subset of causally connected time series with each target time series and derive its form for various exponential distributions. We propose two algorithms—the genetic-type algorithm (HMMLGA) and exHMML to find the subset. We demonstrated the superiority of both algorithms in synthetic experiments with respect to the comparison methods Lingam, HGGM and statistical framework Granger causality (SFGC). In the real data experiments, we used the methods to discriminate between pregnancy and labor phase using electrohysterogram data of Islandic mothers from Physionet databasis. We further analysed the Austrian climatological time measurements and their temporal interactions in rain and sunny days scenarios. In both experiments, the results of HMMLGA had the most realistic interpretation with respect to the comparison methods. We provide our code in Matlab. To our best knowledge, this is the first work using the MML principle for causal inference in HGGM.  相似文献   
119.
A one-dimensional gas comprising N point particles undergoing elastic collisions within a finite space described by a Sinai billiard generating identical dynamical trajectories are calculated and analyzed with regard to strict extensivity of the entropy definitions of Boltzmann–Gibbs. Due to the collisions, trajectories of gas particles are strongly correlated and exhibit both chaotic and periodic properties. Probability distributions for the position of each particle in the one-dimensional gas can be obtained analytically, elucidating that the entropy in this special case is extensive at any given number N. Furthermore, the entropy obtained can be interpreted as a measure of the extent of interactions between molecules. The results obtained for the non-mixable one-dimensional system are generalized to mixable one- and two-dimensional systems, the latter by a simple example only providing similar findings.  相似文献   
120.
杜子平  孙瑞泽 《运筹与管理》2022,31(12):157-164
将我国新能源、化石能源和高科技产业纳入同一分析框架,采用因果关系检验、时变copula模型、滚动窗口R藤copula模型研究了三者股价动态相依结构,结果表明:新能源与高科技产业的联动性超过了能源产业内部的联动性,在投资者视角中新能源产业具备较强的高科技属性;新能源与高科技产业的联动性呈下降趋势;新能源与高科技产业的尾部相关系数波动较大,新能源产业的高科技属性对扶持政策的变动较为敏感;新能源产业对高科技产业有长期、稳定的引领作用,而高科技产业仅在特定时期是新能源产业的格兰杰原因,这对“新能源产业的兴衰很大程度依赖于特定科技的发展”这一传统观点提出了质疑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号