首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9972篇
  免费   1230篇
  国内免费   661篇
化学   454篇
晶体学   46篇
力学   2861篇
综合类   96篇
数学   6403篇
物理学   2003篇
  2025年   7篇
  2024年   111篇
  2023年   135篇
  2022年   119篇
  2021年   154篇
  2020年   289篇
  2019年   270篇
  2018年   271篇
  2017年   276篇
  2016年   303篇
  2015年   266篇
  2014年   428篇
  2013年   868篇
  2012年   445篇
  2011年   559篇
  2010年   462篇
  2009年   590篇
  2008年   620篇
  2007年   627篇
  2006年   553篇
  2005年   499篇
  2004年   460篇
  2003年   433篇
  2002年   388篇
  2001年   319篇
  2000年   356篇
  1999年   273篇
  1998年   284篇
  1997年   238篇
  1996年   186篇
  1995年   135篇
  1994年   132篇
  1993年   105篇
  1992年   121篇
  1991年   98篇
  1990年   80篇
  1989年   48篇
  1988年   32篇
  1987年   25篇
  1986年   30篇
  1985年   38篇
  1984年   54篇
  1983年   32篇
  1982年   39篇
  1981年   28篇
  1980年   19篇
  1979年   17篇
  1978年   11篇
  1973年   8篇
  1957年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
12.
The flow around spherical, solid objects is considered. The boundary conditions on the solid boundaries have been applied by replacing the boundary with a surface force distribution on the surface, such that the required boundary conditions are satisfied. The velocity on the boundary is determined by extrapolation from the flow field. The source terms are determined iteratively, as part of the solution. They are then averaged and are smoothed out to nearby computational grid points. A multi‐grid scheme has been used to enhance the computational efficiency of the solution of the force equations. The method has been evaluated for flow around both moving and stationary spherical objects at very low and intermediate Reynolds numbers. The results shows a second order accuracy of the method both at creeping flow and at Re=100. The multi‐grid scheme is shown to enhance the convergence rate up to a factor 10 as compared to single grid approach. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
13.
Numerical simulation aspects, related to low Reynolds number free boundary viscous flows at micro and mesolevel during the resin impregnation stage of the liquid composite moulding process (LCM), are presented in this article. A free boundary program (FBP), developed by the authors, is used to track the movement of the resin front accurately by accounting for the surface tension effects at the boundary. Issues related to the global and local mass conservation (GMC and LMC) are identified and discussed. Unsuitable conditions for LMC and consequently GMC are uncovered at low capillary numbers, and hence a strategy for the numerical simulation of such flows is suggested. FBP encompasses a set of subroutines that are linked to modules in ANSYS. FBP can capture the void formation dynamics based on the analysis developed. We present resin impregnation dynamics in two dimensions. Extension to three dimensions is a subject for further research. Several examples are shown and efficiency of different stabilization techniques are compared. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
14.
The paper presents a new formulation of the integral boundary element method (BEM) using subdomain technique. A continuous approximation of the function and the function derivative in the direction normal to the boundary element (further ‘normal flux’) is introduced for solving the general form of a parabolic diffusion‐convective equation. Double nodes for normal flux approximation are used. The gradient continuity is required at the interior subdomain corners where compatibility and equilibrium interface conditions are prescribed. The obtained system matrix with more equations than unknowns is solved using the fast iterative linear least squares based solver. The robustness and stability of the developed formulation is shown on the cases of a backward‐facing step flow and a square‐driven cavity flow up to the Reynolds number value 50 000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
15.
A complete boundary integral formulation for compressible Navier–Stokes equations with time discretization by operator splitting is developed using the fundamental solutions of the Helmholtz operator equation with different order. The numerical results for wall pressure and wall skin friction of two‐dimensional compressible laminar viscous flow around airfoils are in good agreement with field numerical methods. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
16.
In this article we survey the Trefftz method (TM), the collocation method (CM), and the collocation Trefftz method (CTM). We also review the coupling techniques for the interzonal conditions, which include the indirect Trefftz method, the original Trefftz method, the penalty plus hybrid Trefftz method, and the direct Trefftz method. Other boundary methods are also briefly described. Key issues in these algorithms, including the error analysis, are addressed. New numerical results are reported. Comparisons among TMs and other numerical methods are made. It is concluded that the CTM is the simplest algorithm and provides the most accurate solution with the best numerical stability. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
17.
This article presents and analyzes a simple method for the exterior Laplace equation through the coupling of finite and boundary element methods. The main novelty is the use of a smooth parametric artificial boundary where boundary elements fit without effort together with a straight approximate triangulation in the bounded area, with the coupling done only in nodes. A numerically integrated version of the algorithm is also analyzed. Finally, an isoparametric variant with higher order is proposed. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 555–570, 2003  相似文献   
18.
The motion of a moored floating body under the action of wave forces, which is influenced by fluid forces, shape of the floating body and mooring forces, should be analysed as a complex coupled motion system. Especially under severe storm conditions or resonant motion of the floating body it is necessary to consider finite amplitude motions of the waves, the floating body and the mooring lines as well as non-linear interactions of these finite amplitude motions. The problem of a floating body has been studied on the basis of linear wave theory by many researchers. However, the finite amplitude motion under a correlated motion system has rarely been taken into account. This paper presents a numerical method for calculating the finite amplitude motion when a floating body is moored by non-linear mooring lines such as chains and cables under severe storm conditions.  相似文献   
19.
This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier–Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters involve flow derivatives at the boundary. Thus, accurate flow gradients are critical to the success of the CSEM. A new approach is presented to extract accurate flow derivatives at the boundary. High order Taylor series expansions are used on layered patches in conjunction with a constrained least‐squares procedure to evaluate accurate first and second derivatives of the flow variables at the boundary, required for Dirichlet and Neumann sensitivity boundary conditions. The flow and sensitivity fields are solved using an adaptive finite‐element method. The proposed methodology is first verified on a problem with a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed method to provide accurate sensitivity fields for realistic problems is then demonstrated. The flow and sensitivity fields for a NACA 0012 airfoil are used for fast evaluation of the nearby flow over an airfoil of different thickness (NACA 0015). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
20.
The total drag force on the surface of a body, which is the sum of the form drag and the skin friction drag in a 2D domain, is numerically evaluated by integrating the energy dissipation rate in the whole domain for an incompressible Stokes fluid. The finite element method is used to calculate both the energy dissipation rate in the whole domain as well as the drag on the boundary of the body. The evaluation of the drag and the energy dissipation rate are post-processing operations which are carried out after the velocity field and the pressure field for the flow over a particular profile have been obtained. The results obtained for the flow over three different but constant area profiles—a circle, an ellipse and a cross-section of a prolate spheroid—with uniform inlet velocity are presented and it is shown that the total drag force times the velocity is equal to the total energy dissipation rate in the entire finite flow domain. Hence, by calculating the energy dissipation rate in the domain with unit velocity specified at the far-field boundary enclosing the domain, the drag force on the boundary of the body can be obtained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号