首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3739篇
  免费   185篇
  国内免费   204篇
化学   1019篇
晶体学   9篇
力学   144篇
综合类   9篇
数学   1527篇
物理学   1420篇
  2024年   4篇
  2023年   61篇
  2022年   41篇
  2021年   57篇
  2020年   80篇
  2019年   70篇
  2018年   64篇
  2017年   67篇
  2016年   64篇
  2015年   87篇
  2014年   133篇
  2013年   247篇
  2012年   123篇
  2011年   170篇
  2010年   135篇
  2009年   249篇
  2008年   252篇
  2007年   335篇
  2006年   286篇
  2005年   167篇
  2004年   214篇
  2003年   175篇
  2002年   150篇
  2001年   142篇
  2000年   116篇
  1999年   108篇
  1998年   94篇
  1997年   119篇
  1996年   76篇
  1995年   48篇
  1994年   29篇
  1993年   19篇
  1992年   23篇
  1991年   14篇
  1990年   7篇
  1989年   9篇
  1988年   15篇
  1987年   9篇
  1986年   9篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1982年   5篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   2篇
  1977年   3篇
  1975年   2篇
  1959年   1篇
排序方式: 共有4128条查询结果,搜索用时 15 毫秒
71.
Platinum nanoparticles with a high percentage of cubic-, tetrahedral- and octahedral-like shapes, respectively, have been synthesized by a shape-controlling technique that we developed recently [Ahmadi et al., Science 272 (June 1996) 1924]. High resolution transmission electron microscopy (HRTEM) is used here to directly image the atomic scale structures of the surfaces of these particles with different shapes. The truncated shapes of these particles are mainly defined by the {100}, {111}, and {110} facets, on which numerous atom-high surface steps, ledges and kinds have been observed. This atomic-scale fine structure of the surfaces of these particles is expected to play a critical role in their catalytic activity and selectivity.  相似文献   
72.
Surface defects created on Ge(001) exposed to low energy Xe ions are characterized by in situ scanning tunneling microscopy (STM). The temperature of the sample during ion bombardment is 165 C and ion energies range from 20 to 240 eV. The ion collisions create defects (vacancies and adatoms) which nucleate and form vacancy and adatom islands. For fixed total vacancy creation, the vacancy island number density increases with increasing ion energy: the vacancy island number density is 1.6 × 10−20 cm−2 for 40 eV ion bombardment and increases to 4.4 × 10−20 cm−2 for 240 eV ion bombardment. The increased nucleation rate for vacancies is attributed to clustering of defects. The sputtering yield of Ge(001) is also measured by STM. The sputtering yield for 20 eV ions is approximately 10−3 per ion but the net yield for surface defects (sum of adatoms and vacancies) is an order of magnitude higher, 10−2, due to adatom-vacancy pair creation.  相似文献   
73.
D. -K. Seo  K. Perdue  J. Ren  M. -H. Whangbo   《Surface science》1997,370(2-3):245-251
Partial electron density plots were calculated for a model SrTiO3(100) surface with √5 × √5 ordered oxygen vacancy to examine why the bright spots of the scanning tunneling microscopy (STM) images of SrTiO3(100) observed in ultrahigh vacuum (UHV) correspond to the oxygen vacancy sites. Possible dependence of the image on the polarity and magnitude of the bias voltage was also discussed on the basis of partial electron density plot calculations. Our study strongly suggests that the UHV STM imaging involves the lowest-lying d-block level of every two Ti3+ centers adjacent to an oxygen vacancy, the tip-sample distance involved in the UHV STM experiments is substantially larger than that involved in typical ambient-condition STM imaging, and the Ti4+ and Ti3+ sites of SrTiO3(100) are reconstructed.  相似文献   
74.
Yunsheng Ma 《Surface science》2009,603(7):1046-1391
The formation, stability and CO adsorption properties of PdAg/Pd(1 1 1) surface alloys were investigated by X-ray photoelectron spectroscopy (XPS) and by adsorption of CO probe molecules, which was characterized by temperature-programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The PdAg/Pd(1 1 1) surface alloys were prepared by annealing (partly) Ag film covered Pd(1 1 1) surfaces, where the Ag films were deposited at room temperature. Surface alloy formation leads to a modification of the electronic properties, evidenced by core-level shifts (CLSs) of both the Pd(3d) and Ag(3d) signal, with the extent of the CLSs depending on both initial Ag coverage and annealing temperature. The role of Ag pre-coverage and annealing temperature on surface alloy formation is elucidated. For a monolayer Ag covered Pd(1 1 1) surface, surface alloy formation starts at ∼450 K, and the resulting surface alloy is stable upon annealing at temperatures between 600 and 800 K. CO TPD and HREELS measurements demonstrate that at 120 K CO is exclusively adsorbed on Pd surface atoms/Pd sites of the bimetallic surfaces, and that the CO adsorption behavior is dominated by geometric ensemble effects, with adsorption on threefold hollow Pd3 sites being more stable than on Pd2 bridge sites and finally Pd1 a-top sites.  相似文献   
75.
杨波  刘一超  王涌天 《光子学报》2004,33(8):970-973
研究了自由曲面反射式照明系统的设计理论和方法.根据反射器的尺寸、位置以及配光要求按点光源设计得到曲面型值点初始坐标后,将双三次B样条曲面引入照明系统的设计,反算出控制顶点.给出了空间任意一条入射光线与反射器区块的交点及其曲面法线向量的求法,为了提高光路追迹的效率,针对多曲面反射体给出了一种快速判断相交区块的算法.探讨了用阻尼最小二乘法对B样条曲面反射器进行优化设计的方法,通过优化运算修正控制顶点Z轴坐标,使得曲面在使用扩展光源时光形分布尽可能满足设计要求.  相似文献   
76.
In this work, we report a scanning tunnelling spectroscopy (STS) study of 30 and 10 nm tin dioxide nanoparticles. The STS spectra give a surface band gap of 2.5 eV for both samples and show that the density of surface states in the band gap is around 6 times higher for the 30 nm particles than for the 10 nm particles. This provides direct experimental evidence for our theoretical model, which predicts a decrease in the surface state density as the particle size decreases, and partly accounts for the improved sensitivity of gas sensing devices fabricated with nanoparticles.  相似文献   
77.
The adsorption behavior and thermal activation of carbon dioxide on the Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0) surfaces have been investigated by means of density functional theory calculations and cluster models and periodic slabs. According to the cluster models, the optimized results indicate that the basis set of C and O atoms has a distinct effect on the adsorption energy, but an indistinct one on the equilibrium geometry. For the CO2/Cu(hkl) adsorption systems studied here, the final structure of adsorbed CO2 is near linear and the preferred modes for the adsorption of CO2 onto the Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0) surfaces are the side-on adsorption at the cross bridge site with an adsorption energy of 13.06 kJ/mol, the side-on adsorption at the short bridge site (13.54 kJ/mol), and the end-on adsorption on the on-top site with C–O bonds located along the short bridge site (26.01 kJ/mol), respectively. However, the calculated adsorption energies from periodic slabs are lower as compared to the experimental data as well as the cluster model data, indicating that the periodic slab approach of generalized gradient approximation in the density function theory may be not suitable to obtain quantitative information on the interaction of CO2 with Cu(hkl) surfaces.  相似文献   
78.
The oxidation of Ni(1 0 0) and Ni(1 1 1) at elevated temperatures and large oxygen exposures, typical of the methods used in the preparation of NiO(1 0 0) films for surface studies, has been investigated by medium energy ion scattering (MEIS) using 100 keV H+ incident ions. Oxide film growth proceeds significantly faster on Ni(1 1 1) than on Ni(1 0 0), but on both surfaces oxide penetration occurs to depths significantly greater than 100 Å with total exposures of 1200 and 6000 L respectively. The metal/oxide interface is extremely rough, with metallic Ni extending to the surface, even for much thicker oxide films on Ni(1 1 1). On Ni(1 1 1), NiO growth occurs with the (1 0 0) face parallel to the Ni(1 1 1) surface and the close-packed 〈1 1 0〉 directions parallel. On Ni(1 0 0) the MEIS blocking curves cannot be reconciled with a single orientation of NiO(1 0 0) (with the 〈1 1 0〉 directions parallel) on the surface, but is consistent with the substantial orientational disorder (including tilt) previously identified by spot-profile analysis LEED.  相似文献   
79.
Molecular electroactive monolayers have been produced from vinylferrocene (VFC) via light-assisted surface anchoring to H-terminated n- and p-Si(1 0 0) wafers prepared via wet chemistry, in a controlled atmosphere. The resulting Si-C bound hybrids have been characterized by means of XPS and AFM. Their performance as semiconductor functionalized electrodes and their surface composition have been followed by combining electrochemical and XPS measurements on the same samples, before and after use in an electrochemical cell. White-light photoactivated anchoring at short (1 h) exposure times has resulted in a mild route, with a very limited impact on the initial quality of the silicon substrate. In fact, the functionalized Si surface results negligibly oxidized, and the C/Fe atomic ratio is close to the value expected for the pure molecular species. The VFC/Si hybrids can be described as (η5-C5H5)Fe2+(η5-C5H4)-CH2-CH2-Si species, on the basis of XPS results. Electrochemical methods have been applied in order to investigate the role played by a robust, covalent Si-C anchoring mode towards substrate-molecule electronic communication, a crucial issue for a perspective development of molecular electronics devices. The response found from cyclic voltammograms for p-Si(1 0 0) functionalized electrodes, run in the dark and under illumination, has shown that the electron transfer is not limited by the number of charge carriers, confirming the occurrence of electron transfer via the Si valence band. The hybrids have shown a noticeable electrochemical stability and reversibility under cyclic voltammetry (cv), and the trend in peak current intensity vs. the scan rate was linear. The molecule-Si bond is preserved even after thousands of voltammetric cycles, although the surface coverage, evaluated from cv and XPS, decreases in the same sequence. An increasingly larger surface concentration of Fe3+ at the expenses of Fe2+ redox centers has been found at increasing number of cv’s, experimentally associated with the growth of silicon oxide. Surface SiO groups from deprotonated silanol termination, induced by the electrochemical treatments, are proposed as the associated counterions for the Fe3+ species. They could be responsible for the observed decrease in the electron transfer rate constant with electrode ageing.  相似文献   
80.
Structural characterisation of such bio-objects as fibrinogen solution, yeast cells, wheat seeds and bone tissues has been done using two versions of cryoporometry based on the integral Gibbs-Thomson (IGT) equation for freezing point depression of pore liquids and the measurements by 1H NMR spectroscopy (180-200 < T < 273 K) and the thermally stimulated depolarisation current (TSDC) method (90 < T < 273 K) of structured water. The IGT equation was solved using a self-consisting regularization procedure including the maximum entropy principle applied to the distribution function of pore size (PSD). Both methods give clear pictures of changes in the structural characteristics caused, e.g., by hydration and swelling of wheat seeds and yeast cells, coagulation and interaction of fibrinogen with solid nanoparticles in the aqueous media, and the human bone tissue disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号