首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1574篇
  免费   424篇
  国内免费   155篇
化学   761篇
晶体学   25篇
力学   73篇
综合类   9篇
数学   242篇
物理学   1043篇
  2024年   4篇
  2023年   21篇
  2022年   73篇
  2021年   67篇
  2020年   73篇
  2019年   40篇
  2018年   52篇
  2017年   78篇
  2016年   70篇
  2015年   68篇
  2014年   114篇
  2013年   128篇
  2012年   110篇
  2011年   130篇
  2010年   109篇
  2009年   114篇
  2008年   111篇
  2007年   135篇
  2006年   104篇
  2005年   83篇
  2004年   65篇
  2003年   67篇
  2002年   52篇
  2001年   41篇
  2000年   44篇
  1999年   29篇
  1998年   25篇
  1997年   32篇
  1996年   15篇
  1995年   14篇
  1994年   8篇
  1993年   10篇
  1992年   16篇
  1991年   6篇
  1990年   4篇
  1989年   10篇
  1988年   3篇
  1987年   1篇
  1986年   9篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1973年   3篇
  1959年   1篇
排序方式: 共有2153条查询结果,搜索用时 15 毫秒
51.
The present paper proposes a new Fin Field Effect Transistor (FinFET) with an amended Channel (AC). The fin region consists of two sections; the lower part which has a rounded shape and the upper part of fin as conventional FinFETs, is cubic. The AC-FinFET devices are proven to have a lower threshold voltage roll-off, reduced DIBL, better subthreshold slope characteristics, and a better gate capacitance in comparison with the C-FinFET. Moreover, the simulation result with three-dimensional and two-carrier device simulator demonstrates an improved output characteristic of the proposed structure due to reduction of self-heating effect. Due to the rounded shape of the lower fin region and decreasing corner effects there, the heat can flow easily, and the device temperature will decrease. Also the gate control over the channel increases due to the narrow upper part of the fin. The paper, thus, attempts to show the advantages of higher performance AC-FinFET device over the conventional one, and its effect on the operation of nanoscale devices.  相似文献   
52.
53.
Tetragonal tungsten bronze (TTB) films have been synthesised on Pt(111)/TiO2/SiO2/Si substrates from Ba2LnFeNb4O15 ceramics (Ln = La, Nd, Eu) by RF magnetron sputtering. X-ray diffraction measurements evidenced the multi-oriented nature of films with some degrees of preferential orientation along (111). The dependence of the dielectric properties on temperature and frequency has been investigated. The dielectric properties of the films are similar to those of the bulk, i.e., ε ∼150 and σ ∼10−6 Ω−1 cm−1 at 1 MHz and room temperature. The films exhibit two dielectric anomalies which are attributed to Maxwell Wagner polarization mechanism and relaxor behaviour. Both anomalies are sensitive to post-annealing under oxygen atmosphere and their activation energies are similar Ea ∼0.30 eV. They are explained in terms of electrically heterogeneous contributions in the films.  相似文献   
54.
This work reports a novel fabrication technique for development of channels on paper‐based microfluidic devices using the syringe module of a 3D printing syringe–based system. In this study, printing using polycaprolactone (PCL)‐based ink (Mw 70 000‐90 000) was employed for the generation of functional hydrophobic barriers on Whatman qualitative filter paper grade 1 (approximate thickness of 180 μm and pore diameter of 11 μm), which would effectively channelize fluid flow to multiple assay zones dedicated for different analyte detection on a microfluidic paper‐based analytical device (μPAD). The standardization studies reveal that a functional hydrophilic channel for sample conduction fabricated using the reported technique can be as narrow as 460.7 ± 20 μm and a functional hydrophobic barrier can be of any width with a lower limit of about 982.2 ± 142.75 μm when a minimum number of two layers of the ink is extruded onto paper. A comparison with the hydrodynamic model established for writing with ink is used to explain the width of the line printed by this system. A fluid flow analysis through a single channel system was also carried out to establish its conformity with the Washburn model, which governs the fluid flow in two‐dimensional μPAD. The presented fabrication technique proves to be a robust strategy that effectively taps the advantages of this 3D printing technique in the production of μPADs with enhanced speed and reproducibility.  相似文献   
55.
DNA nanotechnology plays an increasingly important role in the biomedical field; however, its application in the design of organic nanomaterials is underexplored. Herein, we report the use of DNA nanotechnology to transport a NIR‐II‐emitting nanofluorophore across the blood–brain barrier (BBB), facilitating non‐invasive imaging of brain tumors. Specifically, the DNA block copolymer, PS‐b‐DNA, is synthesized through a solid‐phase click reaction. We demonstrate that its self‐assembled structure shows exceptional cluster effects, among which BBB‐crossing is the most notable. Therefore, PS‐b‐DNA is utilized as an amphiphilic matrix to fabricate a NIR‐II nanofluorephore, which is applied in in vivo bioimaging. Accordingly, the NIR‐II fluorescence signal of the DNA‐based nanofluorophore localized at a glioblastoma is 3.8‐fold higher than the NIR‐II fluorescence signal of the PEG‐based counterpart. The notably increased imaging resolution will significantly benefit the further diagnosis and therapy of brain tumors.  相似文献   
56.
Abstract

The methanolic extract of Callyspongia samarensis (MCS) significantly inhibited β-secretase 1 (IC50 99.82?µg/mL) in a dose-dependent manner and demonstrated a noncompetitive type of inhibition. Furthermore, it exhibited the highest AMPK activation (EC50 14.47?μg/mL) as compared with the standard, Aspirin (EC50 >100?μg/mL). HPLC/ESI-MS analysis of MCS extract revealed 15 peaks, in which nine peaks demonstrated similar fragmentation pattern with the known compounds in literature and in database library: 5-aminopentanoic acid (1), 4-aminobutanoic acid (3), Luotonin A (4), (E)-3-(1H-imidazol-5-yl) prop-2-enoic acid (8), Galactosphingosine (10), D-sphingosine (11), 5,7,4′-trihydroxy-3′,5′-dimethoxyflavone (12), hydroxydihydrovolide (13), and 3,5-dibromo-4-methoxyphenylpyruvic acid (14); and 6 peaks are not identified (2, 5–7, 9, and 15). Acute oral toxicity test of MCS extract revealed that it is nontoxic, with an LD50 of >2000?mg/kg. Assessment of BBB permeability of MCS extract showed that compound 15 was able to cross the BBB making it a suitable candidate for developing CNS drugs.  相似文献   
57.
A fully-coupled model for a piezoelectric hetero-junction subjected to a pair of stresses is proposed by discarding the depletion layer approximation. The effect of mechanical loadings on PN junction performance is discussed in detail. Numerical examples are carried out for a p-Si/ZnO-n hetero-junction under a pair of stresses acting on the ntype ZnO portion near the PN interface, where ZnO has the piezoelectric property while Si is not. It is found that the bottom of conduction band is lowered/raised near the two loading points due to the decrease/increase in the electron potential energy there induced by a tensile-stress mode via sucking in majority-carriers from two outside regions, which implies appearance of a potential barrier and a potential well near two loading points. Furthermore, the barrier height and well depth gradually become large with increasing tensile stress such that more and more electrons/holes are inhaled in loading region from the n-/p-zone, respectively. Conversely, rising/dropping of conduction band bottom is brought out near the two loading points by a compressive-stress mode due to the increase/decrease in the potential energy of electrons by pumping out the majority-carriers from the loading region to the two outside regions. Therefore, a potential well and a potential barrier are induced near the two loading points, such that more and more electrons/holes are driven away from the loading region to the n-zone/p-zone, respectively, with the increasing compressive stress. These effects are important to tune the carrier recombination rate near the PN interface. Thus, the present study possesses great referential significance to piezotronic devices.  相似文献   
58.
Perfluorocarbon monomers such as C2F4, C2F6, C4F10, and mixtures thereof with H2, were subjected to plasma polymerization and deposited onto low-density polyethylene (LDPE) substrates. The effect of plasma conditions, surface characteristics, and surface dynamics of plasma polymers on their ability to improve the resistance to water vapor permeation was investigated. An optimum discharge energy density was found for a monomer which provided the greatest reduction water vapor permeability. Although all of the plasma polymers show higher hydrophobicity than polyethylene, the reduction in water vapor permeability is not uniquely related to water contact angle. The surface-dynamic stability of a plasma polymer surface was found to be the key factor in determining the barrier performance of the plasma polymer. The extent of change of surface-configuration after water immersion strongly correlated with the improvement in the water vapor permeation resistance. Plasma polymers with the higher surface-dynamic stability provided the better water barrier coating applied on LDPE films. © 1996 John Wiley & Sons, Inc.  相似文献   
59.
《Physics letters. A》2020,384(21):126426
Using density functional theory combined with a global crystal structure search with the particle swarm optimization method, we propose three stable three-dimensional (3D) metallic RhP structures, namely, the Cmcm (RhP-I), P6/mmm (RhP-II), and P63mc (RhP-III) phases. All these structures are found to be dynamically stable through vibrational normal mode calculations, indicating that they could be successfully synthesized in experiments. We show that the RhP-I phase has a relatively high thermodynamic stability and high mechanical strength in comparison with the others. The RhP-II and RhP-III phases have porous structures which could accommodate small atoms or molecules. However their thermodynamics are poor, especially the RhP-III phase. The RhP-II structure is stable at 500 K, but the RhP-III fails to survive even at the freezing point of water. Importantly, all these materials have one dimensional conducting channels corresponding to ultrahigh Fermi velocities. Moreover, the porous hexagonal RhP-II and III structures exhibit excellent ability to trap lithium, hydrogen, oxygen, and boron atoms. The RhP-II structure could be especially useful for directly dissociating the hydrogen molecule into two atoms without an energy barrier. In the present study, we identify three new metallic structures to the family of RhP structures, and anticipate their potential for technological applications.  相似文献   
60.
《Physics letters. A》2020,384(19):126402
As the key factor for designing the valleytronic devices is to well understand the valley-dependent transport mechanism in graphene, we investigate, in this work, the effect of two ferromagnetic (FM) metal stripes on the valley polarization in a graphene nanostructure with a strain. The nearly 100% valley polarization is observed at certain energy windows and it can be easily controlled through changing the width and the position of the FM stripe as well as the strength of the magnetic field induced by the FM stripe. Our interesting findings reveal the valley-dependent transport mechanism of electrons and promote the realization of the new types of valleytronic devices modulated by the FM stripe and the strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号