首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   26篇
  国内免费   9篇
化学   10篇
力学   1篇
综合类   2篇
数学   272篇
物理学   7篇
  2024年   1篇
  2023年   8篇
  2022年   8篇
  2021年   3篇
  2020年   17篇
  2019年   11篇
  2018年   11篇
  2017年   14篇
  2016年   8篇
  2015年   6篇
  2014年   7篇
  2013年   18篇
  2012年   6篇
  2011年   12篇
  2010年   15篇
  2009年   29篇
  2008年   10篇
  2007年   13篇
  2006年   18篇
  2005年   5篇
  2004年   7篇
  2003年   7篇
  2002年   14篇
  2001年   5篇
  2000年   6篇
  1999年   11篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有292条查询结果,搜索用时 218 毫秒
31.
Dirac定理的局部化与Hamilton图   总被引:4,自引:0,他引:4  
设G为一个n阶2-连通图,n≥3.若|Dn/2(K1,3)|≥2且满足下述条件之一:i)|Dn/2(K1,3+e)|≥2,ii)若K1,3+e→G,xy(?)E(K1,3+e),则max{dG(x),dG(y)}≥n/2,则G是一个Hamiltonian图或其闭包为sP|⊕H,这里sP⊕H是一类极小2-边连通图.  相似文献   
32.
33.
34.
35.
《Discrete Mathematics》2020,343(10):112015
A long standing open problem in extremal graph theory is to describe all graphs that maximize the number of induced copies of a path on four vertices. The character of the problem changes in the setting of oriented graphs, and becomes more tractable. Here we resolve this problem in the setting of oriented graphs without transitive triangles.  相似文献   
36.
A graph is 1-planar if it has a drawing in the plane such that each edge is crossed at most once by another edge. Moreover, if this drawing has the additional property that for each crossing of two edges the end vertices of these edges induce a complete subgraph, then the graph is locally maximal 1-planar. For a 3-connected locally maximal 1-planar graph G, we show the existence of a spanning 3-connected planar subgraph and prove that G is Hamiltonian if G has at most three 3-vertex-cuts, and that G is traceable if G has at most four 3-vertex-cuts. Moreover, infinitely many nontraceable 5-connected 1-planar graphs are presented.  相似文献   
37.
The vertex‐deleted subgraph G?v, obtained from the graph G by deleting the vertex v and all edges incident to v, is called a card of G. The deck of G is the multiset of its unlabelled vertex‐deleted subgraphs. The number of common cards of G and H (or between G and H) is the cardinality of the multiset intersection of the decks of G and H. In this article, we present infinite families of pairs of graphs of order n ≥ 4 that have at least \begin{eqnarray*}2\lfloor\frac{1}{3}(n-1)\rfloor\end{eqnarray*} common cards; we conjecture that these, along with a small number of other families constructed from them, are the only pairs of graphs having this many common cards, for sufficiently large n. This leads us to propose a new stronger version of the Reconstruction Conjecture. In addition, we present an infinite family of pairs of graphs with the same degree sequence that have \begin{eqnarray*}\frac{2}{3}(n+5-2\sqrt{3n+6})\end{eqnarray*} common cards, for appropriate values of n, from which we can construct pairs having slightly fewer common cards for all other values of n≥10. We also present infinite families of pairs of forests and pairs of trees with \begin{eqnarray*}2\lfloor\frac{1}{3}(n-4)\rfloor\end{eqnarray*} and \begin{eqnarray*}2\lfloor\frac{1}{3}(n-5)\rfloor\end{eqnarray*} common cards, respectively. We then present new families that have the maximum number of common cards when one graph is connected and the other disconnected. Finally, we present a family with a large number of common cards, where one graph is a tree and the other unicyclic, and discuss how many cards are required to determine whether a graph is a tree. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 146–163, 2010  相似文献   
38.
Using the theory of negative association for measures and the notion of unimodularity for random weak limits of sparse graphs, we establish the validity of the cavity method for counting spanning subgraphs subject to local constraints in asymptotically tree‐like graphs. Specifically, the normalized logarithm of the associated partition function (free energy) is shown to converge along any sequence of graphs whose random weak limit is a tree, and the limit is directly expressed in terms of the unique solution to a limiting cavity equation. On a Galton–Watson tree, the latter simplifies into a recursive distributional equation which can be solved explicitly. As an illustration, we provide a new asymptotic formula for the maximum size of a b‐matching in the Erd?s–Rényi random graph with fixed average degree and diverging size, for any $b\in\mathbb{N}Using the theory of negative association for measures and the notion of unimodularity for random weak limits of sparse graphs, we establish the validity of the cavity method for counting spanning subgraphs subject to local constraints in asymptotically tree‐like graphs. Specifically, the normalized logarithm of the associated partition function (free energy) is shown to converge along any sequence of graphs whose random weak limit is a tree, and the limit is directly expressed in terms of the unique solution to a limiting cavity equation. On a Galton–Watson tree, the latter simplifies into a recursive distributional equation which can be solved explicitly. As an illustration, we provide a new asymptotic formula for the maximum size of a b‐matching in the Erd?s–Rényi random graph with fixed average degree and diverging size, for any $b\in\mathbb{N}$. To the best of our knowledge, this is the first time that correlation inequalities and unimodularity are combined together to yield a general proof of uniqueness of Gibbs measures on infinite trees. We believe that a similar argument is applicable to other Gibbs measures than those over spanning subgraphs considered here. © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 2013  相似文献   
39.
A blocking quadruple (BQ) is a quadruple of vertices of a graph such that any two vertices of the quadruple either miss (have no neighbours on) some path connecting the remaining two vertices of the quadruple, or are connected by some path missed by the remaining two vertices. This is akin to the notion of asteroidal triple used in the classical characterization of interval graphs by Lekkerkerker and Boland [Klee, V., What are the intersection graphs of arcs in a circle?, American Mathematical Monthly 76 (1976), pp. 810–813.].In this note, we first observe that blocking quadruples are obstructions for circular-arc graphs. We then focus on chordal graphs, and study the relationship between the structure of chordal graphs and the presence/absence of blocking quadruples.Our contribution is two-fold. Firstly, we provide a forbidden induced subgraph characterization of chordal graphs without blocking quadruples. In particular, we observe that all the forbidden subgraphs are variants of the subgraphs forbidden for interval graphs [Klee, V., What are the intersection graphs of arcs in a circle?, American Mathematical Monthly 76 (1976), pp. 810–813.]. Secondly, we show that the absence of blocking quadruples is sufficient to guarantee that a chordal graph with no independent set of size five is a circular-arc graph. In our proof we use a novel geometric approach, constructing a circular-arc representation by traversing around a carefully chosen clique tree.  相似文献   
40.
If is a subclass of the class of claw‐free graphs, then is said to be stable if, for any , the local completion of G at any vertex is also in . If is a closure operation that turns a claw‐free graph into a line graph by a series of local completions and is stable, then for any . In this article, we study stability of hereditary classes of claw‐free graphs defined in terms of a family of connected closed forbidden subgraphs. We characterize line graph preimages of graphs in families that yield stable classes, we identify minimal families that yield stable classes in the finite case, and we also give a general background for techniques for handling unstable classes by proving that their closure may be included into another (possibly stable) class.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号