首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7380篇
  免费   829篇
  国内免费   416篇
化学   2108篇
晶体学   138篇
力学   1256篇
综合类   64篇
数学   1256篇
物理学   3803篇
  2024年   8篇
  2023年   63篇
  2022年   156篇
  2021年   182篇
  2020年   196篇
  2019年   148篇
  2018年   168篇
  2017年   204篇
  2016年   166篇
  2015年   188篇
  2014年   259篇
  2013年   637篇
  2012年   375篇
  2011年   452篇
  2010年   354篇
  2009年   446篇
  2008年   441篇
  2007年   437篇
  2006年   429篇
  2005年   360篇
  2004年   352篇
  2003年   321篇
  2002年   298篇
  2001年   225篇
  2000年   234篇
  1999年   165篇
  1998年   207篇
  1997年   186篇
  1996年   152篇
  1995年   110篇
  1994年   100篇
  1993年   77篇
  1992年   97篇
  1991年   43篇
  1990年   57篇
  1989年   38篇
  1988年   39篇
  1987年   24篇
  1986年   32篇
  1985年   38篇
  1984年   30篇
  1983年   10篇
  1982年   29篇
  1981年   15篇
  1980年   13篇
  1979年   10篇
  1978年   13篇
  1977年   6篇
  1976年   9篇
  1973年   10篇
排序方式: 共有8625条查询结果,搜索用时 31 毫秒
971.
A magnet designed for use in a magnetic refrigeration device is presented. The magnet is designed by applying two general schemes for improving a magnet design to a concentric Halbach cylinder magnet design and dimensioning and segmenting this design in an optimum way followed by the construction of the actual magnet. The final design generates a peak value of 1.24 T, an average flux density of 0.9 T in a volume of 2 L using only 7.3 L of magnet, and has an average low flux density of 0.08 T also in a 2 L volume. The working point of all the permanent magnet blocks in the design is very close to the maximum energy density. The final design is characterized in terms of a performance parameter, and it is shown that it is one of the best performing magnet designs published for magnetic refrigeration.  相似文献   
972.
采用分子动力学方法和原子嵌入模型势模拟了大尺寸金(n=1136--1556)、银(n=1088--1724)、铜(n=1000--1600)、铂(n=1004--1800)原子纳米团簇的熔化过程,得出了相应纳米团簇的势能随温度的变化曲线以及热容量随温度的变化曲线,研究了各种原子纳米团簇熔点与其团簇尺寸的关系。模拟结果表明团簇的熔点随团簇尺寸增大而升高,并逐渐向大块晶体靠拢。所有纳米团簇在熔化过程中在熔点附近都出现负热容现象,通过对团簇熔化前后结构的比较研,分析了导致这种现象的原因。  相似文献   
973.
We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic–acoustic media. A velocity–strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic–acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic–acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.  相似文献   
974.
Dielectric measurements have been carried out for the determination of real and imaginary parts of the permittivity of a newly synthesized, unusually shaped liquid crystal. The sample has been investigated in the frequency range from 100 Hz to 10 MHz within a temperature range 80-130 °C. The dielectric measurements in the smectic A phase indicate a Cole-Cole type of dispersion, and the activation energy was found to be 5.5 meV by using the Arrhenius plot of relaxation time. In addition to this, thermal and optical transmittance studies have also been conducted in the above mentioned temperature range, and the temperature dependence of these parameters has been discussed in detail. The phase transition temperature obtained from a differential scanning calorimetry (DSC) study matches within 2 °C that was obtained from an optical transmittance study. The dielectric and optical behavior of the unusually shaped liquid crystal has been explained on the basis of a proposed theoretical model in which a sample possesses two different conformers having induced polarizations in opposite directions.  相似文献   
975.
Optimal shape design problems of steady-state radiative heat transfer are considered. The optimal shape design problem (in the three-dimensional space) is formulated as an inverse one, i.e., in the form of an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem via a least-squares objective functional. The minimization problem has to be solved numerically. Gradient minimization methods need the gradient of a functional to be minimized. In this paper the shape gradient of the least-squares objective functional is derived with the help of the shape sensitivity analysis and adjoint problem method. In practice a surface to be optimized may be (or, most likely, is to be) given in a parametric form by a finite number of parameters. In this case the objective functional is, in fact, a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. The gradient of the objective functional, in the case that the surface to be optimized is given in a finite-parametric form, is derived from the shape gradient. A particular case, that a surface to be optimized is a “two-dimensional” polyhedral one, is considered. The technique, developed in the paper, is applied to a synthetic problem of designing a “two-dimensional” radiant enclosure.  相似文献   
976.
The heat equation is parabolic partial differential equation and occurs in the characterization of diffusion progress. In the present work, a new fractional operator based on the Rabotnov fractional-exponential kernel is considered. Next, we conferred some fascinating and original properties of nominated new fractional derivative with some integral transform operators where all results are significant. The fundamental target of the proposed work is to solve the multidimensional heat equations of arbitrary order by using analytical approach homotopy perturbation transform method and residual power series method, where new fractional operator has been taken in new Yang-Abdel-Aty-Cattani (YAC) sense. The obtained results indicate that solution converges to the original solution in language of generalized Mittag-Leffler function. Three numerical examples are discussed to draw an effective attention to reveal the proficiency and adaptability of the recommended methods on new YAC operator.  相似文献   
977.
《Mathematische Nachrichten》2018,291(2-3):374-397
Under some mild assumptions on the Lévy measure and the symbol we obtain gradient estimates of Dirichlet heat kernels for pure‐jump isotropic unimodal Lévy processes in .  相似文献   
978.
In this paper we analyze, from the numerical point of view, a dynamic thermoelastic problem. Here, the so-called exact heat conduction model with a delay term is used to obtain the heat evolution. Thus, the thermomechanical problem is written as a coupled system of partial differential equations, and its variational formulation leads to a system written in terms of the velocity and the temperature fields. An existence and uniqueness result is recalled. Then, fully discrete approximations are introduced by using the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. A priori error estimates are proved, from which the linear convergence of the algorithm could be derived under suitable additional regularity conditions. Finally, a two-dimensional numerical example is solved to show the accuracy of the approximation and the decay of the discrete energy.  相似文献   
979.
This paper presents our study of regularity for p-harmonic map heat flows. We devise a monotonicity-type formula of scaled energy and establish a criterion for a uniform regularity estimate for regular p-harmonic map heat flows. As application we show the small data global in the time existence of regular p-harmonic map heat flow.  相似文献   
980.
We consider rough metrics on smooth manifolds and corresponding Laplacians induced by such metrics. We demonstrate that globally continuous heat kernels exist and are Hölder continuous locally in space and time. This is done via local parabolic Harnack estimates for weak solutions of operators in divergence form with bounded measurable coefficients in weighted Sobolev spaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号