首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   1篇
  国内免费   1篇
化学   45篇
数学   40篇
物理学   85篇
  2023年   6篇
  2022年   25篇
  2021年   6篇
  2020年   5篇
  2019年   2篇
  2018年   4篇
  2017年   29篇
  2016年   10篇
  2015年   9篇
  2014年   18篇
  2013年   9篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1998年   2篇
  1996年   2篇
  1992年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
21.
The study explored the impact of Please Go Bring Me-COnceptual Model-based Problem Solving (PGBM-COMPS) computer tutoring system on multiplicative reasoning and problem solving of students with learning disabilities. The PGBM-COMPS program focused on enhancing the multiplicative reasoning and problem solving through nurturing fundamental mathematical ideas and moving students above and beyond the concrete level of operation. This is achieved by taking advantages of the constructivist approach from mathematics education and explicit conceptual model-based problem solving approach from special education. Participants were three elementary students with learning disabilities (LD). A mixed method design was employed to investigate the effect of the PGBM-COMPS program on enhancing students’ multiplicative reasoning and problem solving. It was found that the PGBM-COMPS program significantly improved participating students’ problem solving performance not only on researcher developed criterion tests but also on a norm-referenced standardized test. Qualitative and quantities data from this study indicate that, in addition to nurturing fundamental concept of composite units, it is necessary to help students to understand underlying problem structures and move toward mathematical model-based problem representation and solving for generalized problem solving skills.  相似文献   
22.
Decision makers select employees for a project to match a particular set of goals pertaining to the multiple criteria mix of skills and competencies needed. Cognitive style influences how a person gathers and evaluates information and consequently, provides skills and competencies toward problem solving. The proposed fuzzy set-based model facilitates the manager’s selection of employees who meet the project goal(s) for the preferred cognitive style. The paper presents background information on cognitive styles and fuzzy logic with an algorithm developed based on belief in the fuzzy probability of a cognitive style fitting a defined goal. An application is presented with analysis and conclusions stated.  相似文献   
23.
We provide responses to the commentaries in this volume to evaluate, clarify and extend some of the arguments in Dependency distance: A new perspective on syntactic patterns in natural languages. Evidences show that DDM (dependency distance minimization) is an important linguistic universal, biologically or cognitively motivated, in shaping the language system. As a general tendency, DDM works quite well in theoretical argumentations as well as practical applications. However, this does not mean that DDM is the only linguistic universal that works: it is highly possible that other factors, which might be biologically, physically, socially or culturally motivated, work as well to jointly mold languages.  相似文献   
24.
In this paper, we propose an optimization framework to determine the distribution of power and bits/channel use to secondary users in a competitive cognitive radio networks. The objectives of the optimization framework are to minimize total transmission power, maximize total bits/channel use and also to maintain quality of service. An upper bound on probability of bit error and lower bound on bits/channel use requirement of secondary users are considered as quality of service. The optimization problem is also constrained by total power budget across channels for a user. Simulating the framework in a centralized manner shows that more transmit power is required to allocate in a channel with higher noise power. However, allocation of bits/channel use is directly proportional to signal to interference plus noise power ratio. The proposed framework is more capable of supporting high bits/channel use requirement than existing resource allocation framework. We also develop the game theoretic user based distributed approach of the proposed framework. We see that user based distributed solution also follows centralized solution.  相似文献   
25.
Cognitive Radio Network (CRN) has emerged as an effective solution to the spectrum under-utilization problem, by providing secondary users (SUs) an opportunistic access to the unoccupied frequency bands of primary users (PUs). Most of the current research on CRN are based on the assumption that the SU always has a large amount of data to transmit. This leads to the objective of SU throughput maximization with a constraint on the allowable interference to the PU. However, in many of the practical scenarios, the data arrival process of the SU closely follows an ON–OFF traffic model, and thus the usual throughput optimization framework may no longer be suitable. In this paper, we propose an intelligent data scheduling strategy which minimizes the average transmission power of the SU while maintaining the transmission delay to be sufficiently small. The data scheduling problem has been formulated as a finite horizon Markov Decision Process (MDP) with an appropriate cost function. Dynamic programming approach has been adopted to arrive at an optimal solution. Our findings show that the average transmitted power for our proposed approach can be as small as 36.5% of the power required for usual throughput maximization technique with insignificant increase in average delay.  相似文献   
26.
In this paper, we study the power allocation problem for an orthogonal frequency division multiplexing (OFDM)-based cognitive radio (CR) system. In a departure from the conventional power allocation schemes available in the literature for OFDM-based CR, we propose power allocation schemes that are augmented with spectral shaping. Active interference cancellation (AIC) is an effective spectral shaping technique for OFDM-based systems. Therefore, in particular, we propose AIC-based optimal and suboptimal power allocation schemes that aim to maximize the downlink transmission capacity of an OFDM-based CR system operating opportunistically within the licensed primary users (PUs) radio spectrum in an overlay approach. Since the CR transmitter may not have the perfect knowledge about the instantaneous channel quality between itself and the active PUs, the interference constraints imposed by each of the PUs are met in a statistical sense. We also study an optimal power allocation scheme that is augmented with raised cosine (RC) windowing-based spectral shaping. For a given power budget at the CR transmitter and the prescribed statistical interference constraints by the PUs, we demonstrate that although the on-the-run computational complexity of the proposed AIC-based optimal power allocation scheme is relatively higher, it may yield better transmission rate for the CR user compared to the RC windowing-based power allocation scheme. Further, the AIC-based suboptimal scheme has the least on-the-run computational complexity, and still may deliver performance that is comparable to that of the RC windowing-based power allocation scheme. The presented simulation results also show that both the AIC-based as well as the RC windowing-based power allocation schemes lead to significantly higher transmission rates for the CR user compared to the conventional (without any spectral shaping) optimal power allocation scheme.  相似文献   
27.
In this paper, the problem of spectrum sensing of OFDM signals for cognitive radios is considered. It is proposed to detect the cyclostationary features introduced in an OFDM signal due to inter-pilot correlation. The performance of the proposed detector is derived and verified in case of AWGN channels. It is observed that the performance of cyclostationary detectors relies on the knowledge of the exact value of the cyclic frequency of the signal of interest. However, an offset in the cyclic frequency may arise due to several reasons. Therefore, for the proposed detector to perform reliably, there is a need to estimate the cyclic frequency offset. The Cramer–Rao bound for the cyclic frequency offset (CFO) estimator is derived, and based on it, two algorithms to estimate and compensate for the CFO are proposed. Simulation results are then used to study the performance of the proposed detection technique under Rayleigh fading both in the presence and the absence of CFO. The performance of the proposed system model is also studied under fast fading, and an alternative test statistic is proposed.  相似文献   
28.
29.
In this study, we recorded spike trains from brain cortical neurons of several behavioral rats in vivo by using multi-electrode recordings. An NFN was constructed in each trial, obtaining a total of 150 NFNs in this study. The topological characteristics of NFNs were analyzed by using the two most important characteristics of complex networks, namely, small-world structure and community structure. We found that the small-world properties exist in different NFNs constructed in this study. Modular function Q was used to determine the existence of community structure in NFNs, through which we found that community-structure characteristics, which are related to recorded spike train data sets, are more evident in the Y-maze task than in the DM-GM task. Our results can also be used to analyze further the relationship between small-world characteristics and the cognitive behavioral responses of rats.  相似文献   
30.
Cognitive radio (CR) is a novel intelligent technology which enables opportunistic access to temporarily unused licensed frequency bands. A key functionality of CR is to distribute free channels efficiently amongst Secondary Users (SUs) boosting spectrum usage to assist the escalating wireless applications world wide. In this context, this paper introduces a channel allocation mechanism which enables SUs (CR enabled unlicensed users) to dynamically access unused spectrum bands to fulfill their spectrum needs. We model the channel allocation problem as a sealed-bid single-sided auction which primarily aims at maximizing the overall spectrum utilization. Market based spectrum auctions in CR networks motivate licensed users to participate and lease their under utilized radio resources to gain monetary benefits. Sequential bidding is applied to this model for auctioning homogeneous channels, which reduces communication overhead. Bid submission takes into account two major CR constraints, namely, dynamics in spectrum opportunities and differences in channel availability time, which on incorporation provide disruption free data transmission to the SUs. We reduce resource wastage in this model by performing multiple auction rounds. Application of second price auction determines winning bidders and their respective payments to auctioneer. The design of our auction mechanism is supported with the proofs of truthfulness and individually rational properties. Furthermore, experimental results indicate that our model outperforms an existing auction method. Spectrum utilization values show 22 to 75% improvement in our model with changing number of SUs, and 23 to 93% improvement in our model with changing number of channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号