首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51469篇
  免费   6165篇
  国内免费   4977篇
化学   12701篇
晶体学   991篇
力学   12717篇
综合类   703篇
数学   19780篇
物理学   15719篇
  2024年   124篇
  2023年   564篇
  2022年   1004篇
  2021年   1139篇
  2020年   1438篇
  2019年   1253篇
  2018年   1271篇
  2017年   1785篇
  2016年   1968篇
  2015年   1560篇
  2014年   2563篇
  2013年   3687篇
  2012年   2903篇
  2011年   3420篇
  2010年   2895篇
  2009年   3274篇
  2008年   3192篇
  2007年   3206篇
  2006年   2973篇
  2005年   2753篇
  2004年   2383篇
  2003年   2202篇
  2002年   1966篇
  2001年   1684篇
  2000年   1592篇
  1999年   1499篇
  1998年   1348篇
  1997年   1153篇
  1996年   940篇
  1995年   834篇
  1994年   702篇
  1993年   538篇
  1992年   561篇
  1991年   439篇
  1990年   357篇
  1989年   263篇
  1988年   196篇
  1987年   158篇
  1986年   112篇
  1985年   147篇
  1984年   127篇
  1983年   73篇
  1982年   79篇
  1981年   56篇
  1980年   33篇
  1979年   50篇
  1978年   33篇
  1977年   43篇
  1976年   15篇
  1957年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
A generalized formulation is applied to implement the quadratic upstream interpolation (QUICK) scheme, the second-order upwind (SOU) scheme and the second-order hybrid scheme (SHYBRID) on non-uniform grids. The implementation method is simple. The accuracy and efficiency of these higher-order schemes on non-uniform grids are assessed. Three well-known bench mark convection-diffusion problems and a fluid flow problem are revisited using non-uniform grids. These are: (1) transport of a scalar tracer by a uniform velocity field; (2) heat transport in a recirculating flow; (3) two-dimensional non-linear Burgers equations; and (4) a two-dimensional incompressible Navier-Stokes flow which is similar to the classical lid-driven cavity flow. The known exact solutions of the last three problems make it possible to thoroughly evaluate accuracies of various uniform and non-uniform grids. Higher accuracy is obtained for fewer grid points on non-uniform grids. The order of accuracy of the examined schemes is maintained for some tested problems if the distribution of non-uniform grid points is properly chosen.  相似文献   
42.
43.
We further study the validity of the Monte Carlo Hamiltonian method. The advantage of the method,in comparison with the standard Monte Carlo Lagrangian approach, is its capability to study the excited states. Weconsider two quantum mechanical models: a symmetric one V(x) = |x|/2; and an asymmetric one V(x) = ∞, forx < 0 and V(x) = x, for x ≥ 0. The results for the spectrum, wave functions and thermodynamical observables are inagreement with the analytical or Runge-Kutta calculations.  相似文献   
44.
In this article we prove uniform convergence estimates for the recently developed Galerkin‐multigrid methods for nonconforming finite elements for second‐order problems with less than full elliptic regularity. These multigrid methods are defined in terms of the “Galerkin approach,” where quadratic forms over coarse grids are constructed using the quadratic form on the finest grid and iterated coarse‐to‐fine intergrid transfer operators. Previously, uniform estimates were obtained for problems with full elliptic regularity, whereas these estimates are derived with less than full elliptic regularity here. Applications to the nonconforming P1, rotated Q1, and Wilson finite elements are analyzed. The result applies to the mixed method based on finite elements that are equivalent to these nonconforming elements. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 203–217, 2002; DOI 10.1002/num.10004  相似文献   
45.
Here we describe analytical and numerical modifications that extend the Differential Reduced Ejector/ mixer Analysis (DREA), a combined analytical/numerical, multiple species ejector/mixing code developed for preliminary design applications, to apply to periodic unsteady flow. An unsteady periodic flow modelling capability opens a range of pertinent simulation problems including pulse detonation engines (PDE), internal combustion engine ICE applications, mixing enhancement and more fundamental fluid dynamic unsteadiness, e.g. fan instability/vortex shedding problems. Although mapping between steady and periodic forms for a scalar equation is a classical problem in applied mathematics, we will show that extension to systems of equations and, moreover, problems with complex initial conditions are more challenging. Additionally, the inherent large gradient initial condition singularities that are characteristic of mixing flows and that have greatly influenced the DREA code formulation, place considerable limitations on the use of numerical solution methods. Fortunately, using the combined analytical–numerical form of the DREA formulation, a successful formulation is developed and described. Comparison of this method with experimental measurements for jet flows with excitation shows reasonable agreement with the simulation. Other flow fields are presented to demonstrate the capabilities of the model. As such, we demonstrate that unsteady periodic effects can be included within the simple, efficient, coarse grid DREA implementation that has been the original intent of the DREA development effort, namely, to provide a viable tool where more complex and expensive models are inappropriate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
46.
For the methylsilsesquioxane film whose optical birefringence is almost zero, it was recently reported that its vertical thermal expansion coefficient (CTE) was approximately one order of magnitude larger than the lateral CTE. Though the birefringence is not an absolute predictor of anisotropic behavior, the discrepancy in both the CTEs was so remarkable that it was essential to investigate whether the anisotropy was intrinsic property or not. If the effect of Poisson's ratio is considered in the calculation of the vertical CTE and when elastic modulus measured by surface acoustic wave spectroscopy is used in the assessment of the lateral CTE, both the CTEs are coincident with each other. Therefore, it can be concluded that the discrepancy in the CTEs can be attributed to a higher in‐plane polymer chain orientation but it can also arise from the misleadingly assumed modulus and Poisson's ratio. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3109–3120, 2006  相似文献   
47.
A new method for the solution of the damped Burgers' equation is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details. The marker method is applicable to a general class of nonlinear dispersive partial differential equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   
48.
For a graph A and a positive integer n, let nA denote the union of n disjoint copies of A; similarly, the union of ?0 disjoint copies of A is referred to as ?0A. It is shown that there exist (connected) graphs A and G such that nA is a minor of G for all n??, but ?0A is not a minor of G. This supplements previous examples showing that analogous statements are true if, instead of minors, isomorphic embeddings or topological minors are considered. The construction of A and G is based on the fact that there exist (infinite) graphs G1, G2,… such that Gi is not a minor of Gj for all ij. In contrast to previous examples concerning isomorphic embeddings and topological minors, the graphs A and G presented here are not locally finite. The following conjecture is suggested: for each locally finite connected graph A and each graph G, if nA is a minor of G for all n ? ?, then ?0A is a minor of G, too. If true, this would be a far‐reaching generalization of a classical result of R. Halin on families of disjoint one‐way infinite paths in graphs. © 2002 Wiley Periodicals, Inc. J Graph Theory 39: 222–229, 2002; DOI 10.1002/jgt.10016  相似文献   
49.
Two domain-adaptive finite difference methods are presented and applied to study the dynamic response of incompressible, inviscid, axisymmetric liquid membranes subject to imposed sinusoidal pressure oscillations. Both finite difference methods map the time-dependent physical domain whose downstream boundary is unknown onto a fixed computational domain. The location of the unknown time-dependent downstream boundary of the physical domain is determined from the continuity equation and results in an integrodifferential equation which is non-linearly coupled with the partial differential equations which govern the conservation of mass and linear momentum and the radius of the liquid membrane. One of the finite difference methods solves the non-conservative form of the governing equations by means of a block implicit iterative method. This method possesses the property that the Jacobian matrix of the convection fluxes has an eigenvalue of algebraic multiplicity equal to four and of geometric multiplicity equal to one. The second finite difference procedure also uses a block implicit iterative method, but the governing equations are written in conservation law form and contain an axial velocity which is the difference between the physical axial velocity and the grid speed. It is shown that these methods yield almost identical results and are more accurate than the non-adaptive techniques presented in Part I. It is also shown that the actual value of the pressure coefficient determined from linear analyses can be exceeded without affecting the stability and convergence of liquid membranes if the liquid membranes are subjected to sinusoidal pressure variations of sufficiently high frequencies.  相似文献   
50.
The problem of computing light scattering by cylindrical fibers with high aspect ratio in the framework of the Null‐Field method with discrete sources is treated. Numerical experiments for investigating the scattering properties of two fiber geometries are performed using distributed spherical vector wave functions as discrete sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号