首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   680篇
  免费   18篇
  国内免费   40篇
化学   281篇
晶体学   4篇
力学   74篇
综合类   4篇
数学   141篇
物理学   234篇
  2023年   15篇
  2022年   17篇
  2021年   39篇
  2020年   9篇
  2019年   21篇
  2018年   12篇
  2017年   16篇
  2016年   21篇
  2015年   20篇
  2014年   33篇
  2013年   60篇
  2012年   43篇
  2011年   41篇
  2010年   38篇
  2009年   57篇
  2008年   52篇
  2007年   59篇
  2006年   27篇
  2005年   21篇
  2004年   12篇
  2003年   12篇
  2002年   11篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1994年   9篇
  1993年   6篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   2篇
  1988年   9篇
  1987年   2篇
  1986年   5篇
  1972年   1篇
  1970年   1篇
排序方式: 共有738条查询结果,搜索用时 15 毫秒
731.
田小飞  张欣 《物理学报》2018,67(14):148701-148701
随着科学技术的发展以及稳态强磁场在医疗诊断中的广泛应用,人们接触到1 T以上稳态强磁场的机会越来越多,稳态强磁场对人体健康的潜在影响也备受关注.虽然目前由于实验条件的限制,稳态强磁场对动物以及人体的研究报道依然有限,但是细胞作为生物体的基本单位,其研究相对较多.然而由于实验中磁场参数、细胞类型等各种因素的不同,使得稳态强磁场对细胞的影响在不同的研究中存在着差异.因此,本文不仅总结和分析了国内外1 T以上稳态强磁场细胞生物学效应的相关研究,包括细胞取向、增殖、微管和纺锤体等,而且对现有研究结果进行比较和概括,并对可能造成实验差异的因素进行分析,例如磁场强度和细胞类型等,从而为下一步研究稳态强磁场下的细胞生物学效应提供基础和依据.  相似文献   
732.
Finite element simulations are carried out to examine the mechanical behavior of the metallic hollow sphere (MHS) material during their large plastic deformation and to estimate the energy absorbing capacity of these materials under uniaxial compression. A simplified model is proposed from experimental observations to describe the connection between the neighboring spheres, which greatly improves the computation efficiency. The effects of the governing physical and geometrical parameters are evaluated; whilst a special attention is paid to the plateau stress, which is directly related to the energy absorbing capacity. Finally, the empirical functions of the relative material density are proposed for the elastic modulus, yield strength and plateau stress for FCC packing arrangement of hollow spheres, showing a good agreement with the experimental results obtained in our previous study. The project supported by the Hong Kong Research Grant Council (RGC) (HKUST 6079/00E) and the National Natural Science Foundation of China (10532020).  相似文献   
733.
The Lagrange problem is established in the discrete field theory subject to constraints with values in a Lie group. For the admissible sections that satisfy a certain regularity condition, we prove that the critical sections of such problems are the solutions of a canonically unconstrained variational problem associated with the Lagrange problem (discrete Lagrange multiplier rule). This variational problem has a discrete Cartan 1-form, from which a Noether theory of symmetries and a multisymplectic form formula are established. The whole theory is applied to the Euler-Poincaré reduction in the discrete field theory, concluding as an illustration with the remarkable example of the harmonic maps of the discrete plane in the Lie group SO(n).  相似文献   
734.
Colonization of cancer cells at secondary sites, a decisive step in tumor metastasis, is strongly dependent on the formation of metastatic microenvironments regulated by intrinsic single-cell metabolism traits. Herein, we report a single-cell microfluidic platform for high-throughput dynamic monitoring of tumor cell metabolites to evaluate tumor malignancy. This microfluidic device empowers efficient isolation of single cells (>99 %) in a squashed state similar to tumor extravasation, and employs enzyme-packaged metal–organic frameworks to catalyze tumor cell metabolites for visualization. The microfluidic evaluation was confirmed by in vivo assays, suggesting that the platform allowed predicting the tumorigenicity of captured tumor cells and screening metabolic inhibitors as anti-metastatic drugs. Furthermore, the platform efficiently detected various aggressive cancer cells in unprocessed whole blood samples with high sensitivity, showing potential for clinical application.  相似文献   
735.
G-quadruplex DNA is a non-canonical structure that forms in guanine-rich regions of the genome. There is increasing evidence showing that G-quadruplexes have important biological functions, and therefore molecular tools to visualise these structures are important. Herein we report on a series of new cyclometallated platinum(II) complexes which, upon binding to G-quadruplex DNA, display an increase in their phosphorescence, acting as switch-on probes. More importantly, upon binding to G-quadruplexes they display a selective and distinct lengthening of their emission lifetime. We show that this effect can be used to selectively visualise these structures in cells using Phosphorescence Lifetime Imaging Microscopy (PLIM).  相似文献   
736.
Rapid cellular uptake of synthetic molecules remains a challenge, and the motif frequently employed to generate prodrugs, succinic ester, unfortunately lowers the efficacy of the desired drugs due to their slow ester hydrolysis and low cell entry. Here we show that succinic ester-containing diglycine drastically boosts the cellular uptake of supramolecular assemblies or prodrugs. Specifically, autohydrolysis of the diglycine-activated succinic esters turns the nanofibers of the conjugates of succinic ester and self-assembling motif into nanoparticles for fast cellular uptake. The autohydrolysis of diglycine-activated succinic esters and drug conjugates also restores the efficacy of the drugs. 2D nuclear magnetic resonance (NMR) suggests that a “U-turn” of diglycine favors intramolecular hydrolysis of diglycine-activated succinic esters to promote autohydrolysis. As an example of rapid autohydrolysis of diglycine-activated succinic esters for instant cellular uptake, this work illustrates a nonenzymatic bond cleavage approach to develop effective therapeutics for intracellular targeting.  相似文献   
737.
Recently, emerging evidence has demonstrated that cavitation actually creates important bidirectional channels on biological barriers for both intratumoral drug delivery and extratumoral biomarker release. To promote the barrier-breaking effects of cavitation for both therapy and diagnosis, we first reviewed recent technical advances of ultrasound and its contrast agents (microbubbles, nanodroplets, and gas-stabilizing nanoparticles) and then reported the newly-revealed cavitation physical details. In particular, we summarized five types of cellular responses of cavitation in breaking the plasma membrane (membrane retraction, sonoporation, endocytosis/exocytosis, blebbing and apoptosis) and compared the vascular cavitation effects of three different types of ultrasound contrast agents in breaking the blood-tumor barrier and tumor microenvironment. Moreover, we highlighted the current achievements of the barrier-breaking effects of cavitation in mediating drug delivery and biomarker release. We emphasized that the precise induction of a specific cavitation effect for barrier-breaking was still challenged by the complex combination of multiple acoustic and non-acoustic cavitation parameters. Therefore, we provided the cutting-edge in-situ cavitation imaging and feedback control methods and suggested the development of an international cavitation quantification standard for the clinical guidance of cavitation-mediated barrier-breaking effects.  相似文献   
738.
The Camellia sinensis plant provides a wide diversity of black, green, oolong, yellow, brick dark, and white tea. Tea is one of the majorly used beverages across the globe, succeeds only in the water for fitness and pleasure. Generally, green tea has been preferred more as compared to other teas due to its main constituent e.g. polyphenols which contribute to various health benefits. The aim of this updated and comprehensive review is to bring together the latest data on the phytochemistry and pharmacological properties of Camellia sinensis and to highlight the therapeutic prospects of the bioactive compounds in this plant so that the full medicinal potential of Camellia sinensis can be realised. A review of published studies on this topic was performed by searching PubMed/MedLine, Scopus, Google scholar, and Web of Science databases from 1999 to 2022. The results of the analysed studies showed that the main polyphenols of tea are the four prime flavonoids catechins: epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), and epicatechin (EC) along with the beneficial biological properties of tea for a broad heterogeneity of disorders, including anticancer, neuroprotective, antibacterial, antiviral, antifungal, antiobesity, antidiabetes and antiglaucoma activities. Poor absorption and low bioavailability of bioactive compounds from Camellia sinensis are limiting aspects of their therapeutic use. More human clinical studies and approaching the latest nanoformulation techniques in nanoparticles to transport the target phytochemical compounds to increase therapeutic efficacy are needed in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号