首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2760篇
  免费   173篇
  国内免费   97篇
化学   77篇
晶体学   1篇
力学   4篇
综合类   39篇
数学   2773篇
物理学   136篇
  2024年   12篇
  2023年   50篇
  2022年   81篇
  2021年   53篇
  2020年   114篇
  2019年   107篇
  2018年   96篇
  2017年   95篇
  2016年   62篇
  2015年   51篇
  2014年   90篇
  2013年   241篇
  2012年   80篇
  2011年   137篇
  2010年   146篇
  2009年   255篇
  2008年   205篇
  2007年   154篇
  2006年   166篇
  2005年   109篇
  2004年   96篇
  2003年   94篇
  2002年   76篇
  2001年   69篇
  2000年   67篇
  1999年   62篇
  1998年   49篇
  1997年   41篇
  1996年   24篇
  1995年   11篇
  1994年   18篇
  1993年   15篇
  1992年   12篇
  1991年   8篇
  1990年   12篇
  1989年   12篇
  1988年   10篇
  1987年   3篇
  1986年   4篇
  1985年   13篇
  1984年   11篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1970年   1篇
排序方式: 共有3030条查询结果,搜索用时 14 毫秒
101.
In this paper, we study the minimum sum set coloring (MSSC) problem which consists in assigning a set of x(v) positive integers to each vertex v of a graph so that the intersection of sets assigned to adjacent vertices is empty and the sum of the assigned set of numbers to each vertex of the graph is minimum. The MSSC problem occurs in two versions: non-preemptive and preemptive. We show that the MSSC problem is strongly NP-hard both in the preemptive case on trees and in the non-preemptive case in line graphs of trees. Finally, we give exact parameterized algorithms for these two versions on trees and line graphs of trees.  相似文献   
102.
Given a vertex v of a graph G the second order degree of v denoted as d 2(v) is defined as the number of vertices at distance 2 from v.In this paper we address the following question:What are the sufficient conditions for a graph to have a vertex v such that d2(v) ≥ d(v),where d(v) denotes the degree of v? Among other results,every graph of minimum degree exactly 2,except four graphs,is shown to have a vertex of second order degree as large as its own degree.Moreover,every K-4-free graph or every maximal planar graph is shown to have a vertex v such that d2(v) ≥ d(v).Other sufficient conditions on graphs for guaranteeing this property are also proved.  相似文献   
103.
A graph property is any class of graphs that is closed under isomorphisms. A graph property P is hereditary if it is closed under taking subgraphs; it is compositive if for any graphs G1, G2 ∈ P there exists a graph G ∈ P containing both G1 and G2 as subgraphs. Let H be any given graph on vertices v1, . . . , vn, n ≥ 2. A graph property P is H-factorizable over the class of graph properties P if there exist P 1 , . . . , P n ∈ P such that P consists of all graphs whose vertex sets can be partitioned into n parts, possibly empty, satisfying: 1. for each i, the graph induced by the i-th non-empty partition part is in P i , and 2. for each i and j with i = j, there is no edge between the i-th and j-th parts if vi and vj are non-adjacent vertices in H. If a graph property P is H-factorizable over P and we know the graph properties P 1 , . . . , P n , then we write P = H [ P 1 , . . . , P n ]. In such a case, the presentation H[ P 1 , . . . , P n ] is called a factorization of P over P. This concept generalizes graph homomorphisms and (P 1 , . . . , P n )-colorings. In this paper, we investigate all H-factorizations of a graph property P over the class of all hered- itary compositive graph properties for finite graphs H. It is shown that in many cases there is exactly one such factorization.  相似文献   
104.
A vertex labeling f : V → Z2 of a simple graph G = (V, E) induces two edge labelings f+ , f*: E → Z2 defined by f+ (uv) = f(u)+f(v) and f*(uv) = f(u)f(v). For each i∈Z2 , let vf(i) = |{v ∈ V : f(v) = i}|, e+f(i) = |{e ∈ E : f+(e) = i}| and e*f(i)=|{e∈E:f*(e)=i}|. We call f friendly if |vf(0)-vf(1)|≤ 1. The friendly index set and the product-cordial index set of G are defined as the sets{|e+f(0)-e+f(1)|:f is friendly} and {|e*f(0)-e*f(1)| : f is friendly}. In this paper we study and determine the connection between the friendly index sets and product-cordial index sets of 2-regular graphs and generalized wheel graphs.  相似文献   
105.
A 2-cell embedding f : X → S of a graph X into a closed orientable surface S can be described combinatorially by a pair M = (X;ρ ) called a map, where ρ is a product of disjoint cycle permutations each of which is the permutation of the arc set of X initiated at the same vertex following the orientation of S . It is well known that the automorphism group of M acts semi-regularly on the arc set of X and if the action is regular, then the map M and the embedding f are called regular. Let p and q be primes. Du et al. [J. Algebraic Combin., 19, 123-141 (2004)] classified the regular maps of graphs of order pq . In this paper all pairwise non-isomorphic regular maps of graphs of order 4 p are constructed explicitly and the genera of such regular maps are computed. As a result, there are twelve sporadic and six infinite families of regular maps of graphs of order 4 p ; two of the infinite families are regular maps with the complete bipartite graphs K2p,2p as underlying graphs and the other four infinite families are regular balanced Cayley maps on the groups Z4p , Z22 × Zp and D4p .  相似文献   
106.
完全多部图的无符号Laplacian特征多项式(英文)   总被引:1,自引:0,他引:1  
For a simple graph G,let matrix Q(G)=D(G) + A(G) be it’s signless Laplacian matrix and Q G (λ)=det(λI Q) it’s signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n1,n2,···,nt).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.  相似文献   
107.
108.
We study a family of digraphs (directed graphs) that generalises the class of Cayley digraphs. For nonempty subsets of a group G, we define the two‐sided group digraph to have vertex set G, and an arc from x to y if and only if for some and . In common with Cayley graphs and digraphs, two‐sided group digraphs may be useful to model networks as the same routing and communication scheme can be implemented at each vertex. We determine necessary and sufficient conditions on L and R under which may be viewed as a simple graph of valency , and we call such graphs two‐sided group graphs. We also give sufficient conditions for two‐sided group digraphs to be connected, vertex‐transitive, or Cayley graphs. Several open problems are posed. Many examples are given, including one on 12 vertices with connected components of sizes 4 and 8.  相似文献   
109.
For let denote the tree consisting of an ‐vertex path with disjoint ‐vertex paths beginning at each of its vertices. An old conjecture says that for any the threshold for the random graph to contain is at . Here we verify this for with any fixed . In a companion paper, using very different methods, we treat the complementary range, proving the conjecture for (with ). © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 794–802, 2016  相似文献   
110.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2‐degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2‐degenerate graphs properly contains seriesparallel graphs, outerplanar graphs, non ? regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G)?Δ + 2, where Δ = Δ(G) denotes the maximum degree of the graph. We prove the conjecture for 2‐degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2‐degenerate graph with maximum degree Δ, then a′(G)?Δ + 1. © 2010 Wiley Periodicals, Inc. J Graph Theory 69: 1–27, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号