首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   577篇
  免费   34篇
  国内免费   64篇
化学   10篇
晶体学   1篇
力学   17篇
综合类   13篇
数学   609篇
物理学   25篇
  2022年   9篇
  2021年   10篇
  2020年   6篇
  2019年   16篇
  2018年   15篇
  2017年   8篇
  2016年   15篇
  2015年   8篇
  2014年   20篇
  2013年   36篇
  2012年   29篇
  2011年   17篇
  2010年   32篇
  2009年   29篇
  2008年   42篇
  2007年   36篇
  2006年   46篇
  2005年   26篇
  2004年   30篇
  2003年   31篇
  2002年   25篇
  2001年   24篇
  2000年   27篇
  1999年   25篇
  1998年   32篇
  1997年   19篇
  1996年   16篇
  1995年   3篇
  1994年   4篇
  1993年   8篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有675条查询结果,搜索用时 15 毫秒
81.
Impacs - A bus crew scheduling system using integer programming   总被引:1,自引:0,他引:1  
  相似文献   
82.
83.
Using the continuum hypothesis, Sierpinski constructed a nonmeasurable function such that is countable for every Clearly, such a function is symmetrically approximately continuous everywhere.

Here we to show that Sierpinski's example cannot be constructed in ZFC. Moreover, we show it is consistent with ZFC that if a function is symmetrically approximately continuous almost everywhere, then it is measurable.

  相似文献   

84.
Sensors are used to monitor traffic in networks. For example, in transportation networks, they may be used to measure traffic volumes on given arcs and paths of the network. This paper refers to an active sensor when it reads identifications of vehicles, including their routes in the network, that the vehicles actively provide when they use the network. On the other hand, the conventional inductance loop detectors are passive sensors that mostly count vehicles at points in a network to obtain traffic volumes (e.g., vehicles per hour) on a lane or road of the network.This paper introduces a new set of network location problems that determine where to locate active sensors in order to monitor or manage particular classes of identified traffic streams. In particular, it focuses on the development of two generic locational decision models for active sensors, which seek to answer these questions: (1) “How many and where should such sensors be located to obtain sufficient information on flow volumes on specified paths?”, and (2) “Given that the traffic management planners have already located count detectors on some network arcs, how many and where should active sensors be located to get the maximum information on flow volumes on specified paths?”The problem is formulated and analyzed for three different scenarios depending on whether there are already count detectors on arcs and if so, whether all the arcs or a fraction of them have them. Location of an active sensor results in a set of linear equations in path flow variables, whose solution provide the path flows. The general problem, which is related to the set-covering problem, is shown to be NP-Hard, but special cases are devised, where an arc may carry only two routes, that are shown to be polynomially solvable. New graph theoretic models and theorems are obtained for the latter cases, including the introduction of the generalized edge-covering by nodes problem on the path intersection graph for these special cases. An exact algorithm for the special cases and an approximate one for the general case are presented.  相似文献   
85.
Summary We determine the minimal radius of <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"4"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"5"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>n=2$, $d$ or $2d$ congruent balls, which cover the $d$-dimensional crosspolytope.  相似文献   
86.
Summary The Illumination Conjecture was raised independently by Boltyanski and Hadwiger in 1960. According to this conjecture any <InlineEquation ID=IE"1"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"2"><EquationSource Format="TEX"><![CDATA[<InlineEquation ID=IE"3"><EquationSource Format="TEX"><![CDATA[$]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>]]></EquationSource></InlineEquation>d$-dimensional convex body can be illuminated by at most $2^d$ light sources. This is an important fundamental problem. The paper surveys the state of the art of the Illumination Conjecture.  相似文献   
87.
《组合设计杂志》2018,26(9):417-438
We define and study variable strength covering arrays (also called covering arrays on hypergraphs), which are generalizations of covering arrays and covering arrays on graphs. Variable strength covering arrays have the potential for use in software testing, allowing the engineer to omit the parameter combinations known to not interact in order to reduce the number of tests required. The present paper shows that variable strength covering arrays are relevant combinatorial objects that have deep connections with hypergraph homomorphisms and generalize other important combinatorial designs. We give optimal constructions for special types of hypergraphs, constructions based on columns with uniform occurrence of symbols, and constructions for mixed alphabets.  相似文献   
88.
We give a decomposition formula for the Bartholdi zeta function of a graph G which is partitioned into some irregular coverings. As a corollary, we obtain a decomposition formula for the Bartholdi zeta function of G which is partitioned into some regular coverings.  相似文献   
89.
Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)Let ex2(n, K) be the maximum number of edges in a 2‐colorable K‐free 3‐graph (where K={123, 124, 134} ). The 2‐chromatic Turán density of K is $\pi_{2}({K}_{4}^-) =lim_{{n}\to \infty} {ex}_{2}({n}, {K}_{4}^-)/\left(_{3}^{n}\right)$. We improve the previously best known lower and upper bounds of 0.25682 and 3/10?ε, respectively, by showing that This implies the following new upper bound for the Turán density of K In order to establish these results we use a combination of the properties of computer‐generated extremal 3‐graphs for small n and an argument based on “super‐saturation”. Our computer results determine the exact values of ex(n, K) for n≤19 and ex2(n, K) for n≤17, as well as the sets of extremal 3‐graphs for those n. © 2009 Wiley Periodicals, Inc. J Combin Designs 18: 105–114, 2010  相似文献   
90.
A covering p from a Cayley graph Cay(G, X) onto another Cay(H, Y) is called typical Frobenius if G is a Frobenius group with H as a Frobenius complement and the map p : G →H is a group epimorphism. In this paper, we emphasize on the typical Frobenius coverings of Cay(H, Y). We show that any typical Frobenius covering Cay(G, X) of Cay(H, Y) can be derived from an epimorphism /from G to H which is determined by an automorphism f of H. If Cay(G, X1) and Cay(G, X2) are two isomorphic typical Frobenius coverings under a graph isomorphism Ф, some properties satisfied by Фare given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号