首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14690篇
  免费   1297篇
  国内免费   439篇
化学   2713篇
晶体学   66篇
力学   6669篇
综合类   121篇
数学   2848篇
物理学   4009篇
  2024年   9篇
  2023年   138篇
  2022年   213篇
  2021年   295篇
  2020年   379篇
  2019年   293篇
  2018年   329篇
  2017年   370篇
  2016年   408篇
  2015年   434篇
  2014年   572篇
  2013年   1044篇
  2012年   733篇
  2011年   930篇
  2010年   640篇
  2009年   861篇
  2008年   815篇
  2007年   831篇
  2006年   738篇
  2005年   626篇
  2004年   658篇
  2003年   562篇
  2002年   509篇
  2001年   383篇
  2000年   388篇
  1999年   339篇
  1998年   347篇
  1997年   330篇
  1996年   304篇
  1995年   264篇
  1994年   244篇
  1993年   219篇
  1992年   215篇
  1991年   161篇
  1990年   145篇
  1989年   115篇
  1988年   106篇
  1987年   70篇
  1986年   71篇
  1985年   79篇
  1984年   72篇
  1983年   38篇
  1982年   76篇
  1981年   22篇
  1980年   12篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1971年   6篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
121.
纬向对称准地转流的非线性稳定性定理   总被引:4,自引:0,他引:4  
建立了周期域上准地转流在一般的边界条件下对应于Arnold第二定理的非线性稳定性定理。将扰动能量与扰动拟能的上界用初始扰动场的显示表示出来,从而建立了Liapunov意义下的非线性稳定性定理。  相似文献   
122.
Urine transport is made from the kidney to the bladder through the ureter by isolated pockets called bolus. To determine the urine flow in a bolus, we use an adherence condition on the interface urine/wall. It gives us an infinite linear system verified by a set of parameters. An iterative and convergent algorithm allows us to solve this system and to determine analytically the components of the velocity vector in the bolus. To cite this article: A. Vogel et al., C. R. Mecanique 332 (2004).  相似文献   
123.
A solution methodology has been developed for incompressible flow in general curvilinear co‐ordinates. Two staggered grids are used to discretize the physical domain. The first grid is a MAC quadrilateral mesh with pressure arranged at the centre and the Cartesian velocity components located at the middle of the sides of the mesh. The second grid is so displaced that its corners correspond to the centre of the first grid. In the second grid the pressure is placed at the corner of the first grid. The discretized mass and momentum conservation equations are derived on a control volume. The two pressure grid functions are coupled explicitly through the boundary conditions and implicitly through the velocity of the field. The introduction of these two grid functions avoids an averaging of pressure and velocity components when calculating terms that are generated in general curvilinear co‐ordinates. The SIMPLE calculation procedure is extended to the present curvilinear co‐ordinates with double grids. Application of the methodology is illustrated by calculation of well‐known external and internal problems: viscous flow over a circular cylinder, with Reynolds numbers ranging from 10 to 40, and lid‐driven flow in a cavity with inclined walls are examined. The numerical results are in close agreement with experimental results and other numerical data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
124.
Bernoulli方程是流体力学的一个基本方程。本将介绍几种简单、有趣而又十分有效的Bernoulli方程演示设计。  相似文献   
125.
提出了在无外力作功的情况下,具有Bauschinger效应的弹塑性材料处于屈服状态产生自发的塑性流动时应满足的条件.这个条件不仅与材料的力学性能有关,而且还处决于材料的具体的载荷边界条件和变形.举例说明了承受拉一扭组合的薄壁圆筒中,采用组合强化模型时,产生塑性流动的具体条件.  相似文献   
126.
Biological transformation of volatile organic compounds is one of the key factors that influence contaminant-plume evolution and thus natural attenuation. In this study we investigate the effect of biological transformation on the transport of contaminants in the aqueous and gaseous phases. The analysis includes the study of the effect of density-driven advection of contaminants in the gaseous phase on multiphase and multispecies flow, fate and transport modeling in the subsurface. Trichloroethylene (TCE) and its two byproducts, dichloroethylene and vinyl chloride, are analyzed as the target contaminants. Our results indicate that density-driven advection of the gaseous phase, which is initiated by evaporation of TCE as a nonaqueous phase liquid, increases the downward and also the lateral migration of TCE within the unsaturated zone. This process also influences the location of high-concentration zones of the byproducts of TCE in the unsaturated and the saturated zones. Biotransformation of TCE contributes to the reduction of dissolved TCE plume development as expected. The daughter byproducts, which are introduced into the subsurface system, show distinct transport patterns as they are affected by their independent degradation kinetics and density-driven advection. These observations, which are based on our simulation results for biotransformation and transport of TCE and its byproducts, are useful in evaluating the natural attenuation processes, its potential health hazards and also the evaluation of potential plume development at contaminated sites.  相似文献   
127.
The indirect boundary element method was used to study the hydrodynamics of oscillatory viscous flow over prolate and oblate spheroids, and over hemispheroidal bodies hinged to a plate. Analytic techniques, such as spheroidal coordinates, method of images, and series representations, were used to make the numerical methods more efficient. A novel method for computing the hydrodynamic torque was used, since for oscillatory flow the torque cannot be computed directly from the weightings. Instead, a Green's function for torque was derived to compute the torque indirectly from the weightings. For full spheroids, the method was checked by comparing the results to exact solutions at low and high frequencies, and to results computed using the singularity method. For hemispheroids hinged to a plate, the method for low frequencies was checked by comparing the results to previous results, and to exact solutions at high frequencies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
128.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   
129.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
130.
The interfacial dynamics‐based cavitation model, developed in Part‐1, is further employed for unsteady flow computations. The pressure‐based operator‐splitting algorithm (PISO) is extended to handle the time‐dependent cavitating flows with particular focus on the coupling of the cavitation and turbulence models, and the large density ratio associated with cavitation. Furthermore, the compressibility effect is important for unsteady cavitating flows because in a water–vapour mixture, depending on the composition, the speed of sound inside the cavity can vary by an order of magnitude. The implications of the issue of the speed of the sound are assessed with alternative modelling approaches. Depending on the geometric confinement of the nozzle, compressibility model and cavitation numbers, either auto‐oscillation or quasi‐steady behaviour is observed. The adverse pressure gradient in the closure region is stronger at the maximum cavity size. One can also observe that the mass transfer process contributes to the cavitation dynamics. Compared to the steady flow computations, the velocity and vapour volume fraction distributions within the cavity are noticeably improved with time‐dependent computations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号