首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14690篇
  免费   1297篇
  国内免费   439篇
化学   2713篇
晶体学   66篇
力学   6669篇
综合类   121篇
数学   2848篇
物理学   4009篇
  2024年   9篇
  2023年   138篇
  2022年   213篇
  2021年   295篇
  2020年   379篇
  2019年   293篇
  2018年   329篇
  2017年   370篇
  2016年   408篇
  2015年   434篇
  2014年   572篇
  2013年   1044篇
  2012年   733篇
  2011年   930篇
  2010年   640篇
  2009年   861篇
  2008年   815篇
  2007年   831篇
  2006年   738篇
  2005年   626篇
  2004年   658篇
  2003年   562篇
  2002年   509篇
  2001年   383篇
  2000年   388篇
  1999年   339篇
  1998年   347篇
  1997年   330篇
  1996年   304篇
  1995年   264篇
  1994年   244篇
  1993年   219篇
  1992年   215篇
  1991年   161篇
  1990年   145篇
  1989年   115篇
  1988年   106篇
  1987年   70篇
  1986年   71篇
  1985年   79篇
  1984年   72篇
  1983年   38篇
  1982年   76篇
  1981年   22篇
  1980年   12篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1971年   6篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
111.
Among the salient features of shear-driven plane Couette flow is the constancy of the total shear stress (viscous and turbulent) across the flow. This constancy gives rise to a quasi-homogenous core region, which makes the bulk of the flow substantially different from pressure-driven Poiseuille flow. The present second-moment closure study addresses the conflicting hypotheses relating to turbulent Couette flow. The inclusion of a new wall-proximity function in the wall-reflection part of the pressure-strain model seems mandatory, and the greement with recent experimental and direct numerical simulation (DNS) results is encouraging. Analysis of model computations in the range 750 ≤ Re ≤ 35,000 and comparisons with low-Re DNS data suggest that plane Couette flow exhibits a local-equilibrium core region, in which anisotropic, homogeneous turbulence prevails. However, the associated variation of the mean velocity in the core, as obtained by the model, conflicts with the intuitively appealing assumption of homogeneous mean shear. The constancy of the velocity gradient exhibited by the DNS therefore signals a deficiency in the modeled transport equation for the energy dissipation rate.  相似文献   
112.
The control of complex, unsteady flows is a pacing technology for advances in fluid mechanics. Recently, optimal control theory has become popular as a means of predicting best case controls that can guide the design of practical flow control systems. However, most of the prior work in this area has focused on incompressible flow which precludes many of the important physical flow phenomena that must be controlled in practice including the coupling of fluid dynamics, acoustics, and heat transfer. This paper presents the formulation and numerical solution of a class of optimal boundary control problems governed by the unsteady two‐dimensional compressible Navier–Stokes equations. Fundamental issues including the choice of the control space and the associated regularization term in the objective function, as well as issues in the gradient computation via the adjoint equation method are discussed. Numerical results are presented for a model problem consisting of two counter‐rotating viscous vortices above an infinite wall which, due to the self‐induced velocity field, propagate downward and interact with the wall. The wall boundary control is the temporal and spatial distribution of wall‐normal velocity. Optimal controls for objective functions that target kinetic energy, heat transfer, and wall shear stress are presented along with the influence of control regularization for each case. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
113.
A new approach to the calculation of the high pressures characterizing the flow field in front of a piston undergoing severe acceleration over the short term is presented. In contrast with previous approaches where the computational domain is altered but which stop short of transforming velocities, here the problem is solved in an accelerating non-Euclidean co-ordinate system where the piston is stationary. The method is applied to a study of the problem of premature sabot separation. Through use of Harten's second-order-accurate TVD scheme, flow simulations are performed for both 1D and 3D axisymmetric geometries. The simple 1D model gives pressure profiles surprisingly close to those of the more physical 3D model.  相似文献   
114.
通过对宁波港的交通环境,现有VTS系统及港口发展的趋势研究,提出了改善宁波港通航环境,建立和完善VTS系统的有效措施。  相似文献   
115.
本文将文献[9]提出改进的通量分裂方法,应用于随时间变化的贴体网格中,建立了可用于求解非定常Euler方程的通量分裂方法.该方法是以连续的特征值分离为基础,它具有方法简单,便于推广使用的特点.同时克服了Steger-Warming通量分裂方法存在的问题.对通量分裂后的Euler方程.利用MUSCL型迎风差分建立了具有二阶精度的有限体积方程.文中以NACA64A—10翼型为例,对其在跨音速流场中进行沉浮、俯仰及带有振动控制面引起的非定常气动载荷进行了计算.部分计算结果与相应的实验结果进行了比较,吻合良好  相似文献   
116.
117.
Relative permeability functions for immiscible displacements in porous media show a wide range of profiles. Although, this behavior is well known, its impact on the stability of the displacement process is unexplored. Our analysis clearly demonstrates for the first time that the viscous instability characteristics of two-phase flows are governed not only by their end point values, but are strongly dependent on the actual profile of relative permeability functions. Linear stability analysis predicts the capacity of the flow to develop large scale fingers which can result in substantial bypassing of the resident fluid. It is observed that relative permeability functions attributed to drainage processes yield a more unstable displacement as compared to functions related to imbibition processes. Moreover, instability is observed to increase for those relative permeability functions which result from increased wettability of the wetting fluid. High accuracy numerical simulations show agreement with these predictions and demonstrate how large amplitude viscous fingers result in significant bypassing for certain relative permeability functions. In the nonlinear regime, the finger amplitude grows at a rate ∝ t1/2 initially, drops to t1/4 at a later time and finally grows ∝ t. The basic mechanisms of finger interaction, however, are not substantially influenced by relative permeability functions.  相似文献   
118.
A particle imaging technique has been used to collect droplet displacement statistics in a round turbulent jet of air. Droplets are injected on the jet axis, and a laser sheet and position-sensitive photomultiplier tube are used to track their radial displacement and time-of-flight. Dispersion statistics can be computed which are Lagrangian or Eulerian in nature. The experiments have been simulated numerically using a second-order closure scheme for the jet and a stochastic simulation for the particle trajectories. Results are presented for non-vaporizing droplets of sizes from 35 to 160 μm. The simulations have underscored the importance of initial conditions and early droplet displacement history on the droplet trajectory for droplets with large inertia relative to the turbulence. Estimates of initial conditions have been made and their effect on dispersion is quantified.  相似文献   
119.
The majority of previous studies of the hydration of cements using heat flow calorimetry have been carried out isothermally. However, with oilwell cements the slurry is mixed on the surface at ambient temperature and then gradually increases in temperature as it is pumped down the well. A Setaram C-80 calorimeter has been used to simulate the temperature ramp in API oilwell cement test schedules. This approach has enabled cementing reactions to be studied for the first time under conditions approaching those encountered in the field, and has shown that the results obtained from isothermal experiments may be misleading.The permission of the British Petroleum Company PLC to publish this paper is gratefully acknowledged.  相似文献   
120.
A general relationship between the volume fraction and the specific interfacial area for averaged dispersed two-phase flows is proposed. This relationship, expressed as a basic set of two scalar evolution equations and two vectorial non-uniformity state equations, is an analytical result obtained by a systematic approach using the derivatives of some generalized functions and a local volume-averaging technique. The proposed set of equations was expressed for measurable macroscopic parameters of the system and has the same generality as the averaged transport equations of two-phase flows. By combination of the basic set of equations, called the averaged topological equations (ATEs), second-order ATEs for the volume fraction were found. The second-order ATEs were expressed both by a Lagrangian formulation and by a Eulerian formulation. The importance and physical meaning of the ATEs developed in this study were clarified within the framework of the theory of kinematic waves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号