首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2934篇
  免费   404篇
  国内免费   148篇
化学   881篇
晶体学   1篇
力学   221篇
综合类   79篇
数学   955篇
物理学   1349篇
  2024年   23篇
  2023年   147篇
  2022年   512篇
  2021年   420篇
  2020年   252篇
  2019年   166篇
  2018年   129篇
  2017年   133篇
  2016年   156篇
  2015年   99篇
  2014年   135篇
  2013年   211篇
  2012年   106篇
  2011年   92篇
  2010年   109篇
  2009年   102篇
  2008年   80篇
  2007年   79篇
  2006年   60篇
  2005年   55篇
  2004年   35篇
  2003年   29篇
  2002年   45篇
  2001年   28篇
  2000年   36篇
  1999年   34篇
  1998年   35篇
  1997年   27篇
  1996年   15篇
  1995年   23篇
  1994年   20篇
  1993年   7篇
  1992年   7篇
  1991年   9篇
  1990年   6篇
  1989年   6篇
  1988年   13篇
  1987年   7篇
  1986年   12篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1981年   2篇
  1979年   4篇
  1977年   3篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
  1959年   5篇
  1957年   1篇
排序方式: 共有3486条查询结果,搜索用时 15 毫秒
11.
Domain adaptation aims to learn a classifier for a target domain task by using related labeled data from the source domain. Because source domain data and target domain task may be mismatched, there is an uncertainty of source domain data with respect to the target domain task. Ignoring the uncertainty may lead to models with unreliable and suboptimal classification results for the target domain task. However, most previous works focus on reducing the gap in data distribution between the source and target domains. They do not consider the uncertainty of source domain data about the target domain task and cannot apply the uncertainty to learn an adaptive classifier. Aimed at this problem, we revisit the domain adaptation from source domain data uncertainty based on evidence theory and thereby devise an adaptive classifier with the uncertainty measure. Based on evidence theory, we first design an evidence net to estimate the uncertainty of source domain data about the target domain task. Second, we design a general loss function with the uncertainty measure for the adaptive classifier and extend the loss function to support vector machine. Finally, numerical experiments on simulation datasets and real-world applications are given to comprehensively demonstrate the effectiveness of the adaptive classifier with the uncertainty measure.  相似文献   
12.
13.
This work presents a quantum associative memory (Alpha-Beta HQAM) that uses the Hamming distance for pattern recovery. The proposal combines the Alpha-Beta associative memory, which reduces the dimensionality of patterns, with a quantum subroutine to calculate the Hamming distance in the recovery phase. Furthermore, patterns are initially stored in the memory as a quantum superposition in order to take advantage of its properties. Experiments testing the memory’s viability and performance were implemented using IBM’s Qiskit library.  相似文献   
14.
On 31 December 2019, a cluster of pneumonia cases of unknown etiology was reported in Wuhan (China). The cases were declared to be Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 has been defined as SARS Coronavirus 2 (SARS-CoV-2). Some countries, e.g., Italy, France, and the United Kingdom (UK), have been subjected to frequent restrictions for preventing the spread of infection, contrary to other ones, e.g., the United States of America (USA) and Sweden. The restrictions afflicted the evolution of trends with several perturbations that destabilized its normal evolution. Globally, Rt has been used to estimate time-varying reproduction numbers during epidemics. Methods: This paper presents a solution based on Deep Learning (DL) for the analysis and forecasting of epidemic trends in new positive cases of SARS-CoV-2 (COVID-19). It combined a neural network (NN) and an Rt estimation by adjusting the data produced by the output layer of the NN on the related Rt estimation. Results: Tests were performed on datasets related to the following countries: Italy, the USA, France, the UK, and Sweden. Positive case registration was retrieved between 24 February 2020 and 11 January 2022. Tests performed on the Italian dataset showed that our solution reduced the Mean Absolute Percentage Error (MAPE) by 28.44%, 39.36%, 22.96%, 17.93%, 28.10%, and 24.50% compared to other ones with the same configuration but that were based on the LSTM, GRU, RNN, ARIMA (1,0,3), and ARIMA (7,2,4) models, or an NN without applying the Rt as a corrective index. It also reduced MAPE by 17.93%, the Mean Absolute Error (MAE) by 34.37%, and the Root Mean Square Error (RMSE) by 43.76% compared to the same model without the adjustment performed by the Rt. Furthermore, it allowed an average MAPE reduction of 5.37%, 63.10%, 17.84%, and 14.91% on the datasets related to the USA, France, the UK, and Sweden, respectively.  相似文献   
15.
Image steganography, which usually hides a small image (hidden image or secret image) in a large image (carrier) so that the crackers cannot feel the existence of the hidden image in the carrier, has become a hot topic in the community of image security. Recent deep-learning techniques have promoted image steganography to a new stage. To improve the performance of steganography, this paper proposes a novel scheme that uses the Transformer for feature extraction in steganography. In addition, an image encryption algorithm using recursive permutation is proposed to further enhance the security of secret images. We conduct extensive experiments to demonstrate the effectiveness of the proposed scheme. We reveal that the Transformer is superior to the compared state-of-the-art deep-learning models in feature extraction for steganography. In addition, the proposed image encryption algorithm has good attributes for image security, which further enhances the performance of the proposed scheme of steganography.  相似文献   
16.
Industrial-based application of supercritical CO2 (SCCO2) has emerged as a promising technology in numerous scientific fields due to offering brilliant advantages, such as simplicity of application, eco-friendliness, and high performance. Loxoprofen sodium (chemical formula C15H18O3) is known as an efficient nonsteroidal anti-inflammatory drug (NSAID), which has been long propounded as an effective alleviator for various painful disorders like musculoskeletal conditions. Although experimental research plays an important role in obtaining drug solubility in SCCO2, the emergence of operational disadvantages such as high cost and long-time process duration has motivated the researchers to develop mathematical models based on artificial intelligence (AI) to predict this important parameter. Three distinct models have been used on the data in this work, all of which were based on decision trees: K-nearest neighbors (KNN), NU support vector machine (NU-SVR), and Gaussian process regression (GPR). The data set has two input characteristics, P (pressure) and T (temperature), and a single output, Y = solubility. After implementing and fine-tuning to the hyperparameters of these ensemble models, their performance has been evaluated using a variety of measures. The R-squared scores of all three models are greater than 0.9, however, the RMSE error rates are 1.879 × 10−4, 7.814 × 10−5, and 1.664 × 10−4 for the KNN, NU-SVR, and GPR models, respectively. MAE metrics of 1.116 × 10−4, 6.197 × 10−5, and 8.777 × 10−5errors were also discovered for the KNN, NU-SVR, and GPR models, respectively. A study was also carried out to determine the best quantity of solubility, which can be referred to as the (x1 = 40.0, x2 = 338.0, Y = 1.27 × 10−3) vector.  相似文献   
17.
Partial discharge (PD) is the main feature that effectively reflects the internal insulation defects of gas-insulated switchgear (GIS). It is of great significance to diagnose the types of insulation faults by recognizing PD to ensure the normal operation of GIS. However, the traditional diagnosis method based on single feature information analysis has a low recognition accuracy of PD, and there are great differences in the diagnosis effect of various insulation defects. To make the most of the rich insulation state information contained in PD, we propose a novel multi-information ensemble learning for PD pattern recognition. First, the ultra-high frequency and ultrasonic data of PD under four typical defects of GIS are obtained through experiment. Then the deep residual convolution neural network is used to automatically extract discriminative features. Finally, multi-information ensemble learning is used to classify PD types at the decision level, which can complement the shortcomings of the independent recognition of the two types of feature information and has higher accuracy and reliability. Experiments show that the accuracy of the proposed method can reach 97.500%, which greatly improves the diagnosis accuracy of various insulation defects.  相似文献   
18.
Necroptosis has emerged as an exciting target in oncological, inflammatory, neurodegenerative, and autoimmune diseases, in addition to acute ischemic injuries. It is known to play a role in innate immune response, as well as in antiviral cellular response. Here we devised a concerted in silico and experimental framework to identify novel RIPK1 inhibitors, a key necroptosis factor. We propose the first in silico model for the prediction of new RIPK1 inhibitor scaffolds by combining docking and machine learning methodologies. Through the data analysis of patterns in docking results, we derived two rules, where rule #1 consisted of a four-residue signature filter, and rule #2 consisted of a six-residue similarity filter based on docking calculations. These were used in consensus with a machine learning QSAR model from data collated from ChEMBL, the literature, in patents, and from PubChem data. The models allowed for good prediction of actives of >90, 92, and 96.4% precision, respectively. As a proof-of-concept, we selected 50 compounds from the ChemBridge database, using a consensus of both molecular docking and machine learning methods, and tested them in a phenotypic necroptosis assay and a biochemical RIPK1 inhibition assay. A total of 7 of the 47 tested compounds demonstrated around 20–25% inhibition of RIPK1’s kinase activity but, more importantly, these compounds were discovered to occupy new areas of chemical space. Although no strong actives were found, they could be candidates for further optimization, particularly because they have new scaffolds. In conclusion, this screening method may prove valuable for future screening efforts as it allows for the exploration of new areas of the chemical space in a very fast and inexpensive manner, therefore providing efficient starting points amenable to further hit-optimization campaigns.  相似文献   
19.
种蛋气室的大小是监测种蛋孵化过程的重要指标之一。根据种蛋的热力学结构,种蛋在孵化过程中,包裹气室部分蛋壳会与其他部分蛋壳产生温差,从而可通过热红外图像进行观察。针对在种蛋孵化过程中,人工照蛋检测气室效率低的问题,探索设计了一种基于热图像的种蛋气室变化俯视监测算法。监测种蛋气室热图像的算法主要包括种蛋目标检测,种蛋图像分割和种蛋气室面积计算3个部分,其中种蛋的目标检测采用Faster-RCNN算法实现;种蛋图像分割采用BP神经网络算法实现;种蛋气室面积是在种蛋图像分割的基础上进行计算。使用孵化5天及以上的种蛋作为研究对象,并拍取种蛋的热图像进行试验。试验结果表明:种蛋热图像的目标检测的平均精度(mAP)为99.85%,拥有较好的检测效果。使用BP网络对种蛋进行图像分割。BP神经网络经过调参后,其网络最佳的结构为三层隐藏层,每个隐藏层拥有1 000个神经元,最优初始学习率为0.000 1,最优最大迭代次数为500。以F1-measure作为分割效果的评价指标,BP神经网络的图像分割总体结果为87.02%,Otsu算法的总体结果为65.25%。其中只有一个蛋的情况下,BP神经网络的分割结果为87.17%,Otsu算法的结果为68.86%。存在其他种蛋的干扰条件下,BP神经网络的分割结果为86.94%,Otsu算法的结果为61.64%,BP神经网络的分割效果优于Otsu分割算法,BP神经网络拥有更强的抗干扰能力。最后提取了孵化5~19 d种蛋的气室变化,通过观察种蛋气室大小曲线来监测种蛋的孵化情况,可看出随着天数的增加,气室有着明显变大的趋势。人工测量法与热红外测量法比较结果说明两者相关性为0.934 3,拥有较好的相关性。基于热图像的种蛋气室变化监测算法可在实际生产中实现种蛋的识别与气室大小的快速监测,为实现监测种蛋孵化的自动化提供了技术参考。  相似文献   
20.
To control the temporal profile of a relativistic electron beam to meet requirements of various advanced scientific applications like free-electron-laser and plasma wakefield acceleration, a widely-used technique is to manipulate the dispersion terms which turns out to be one-to-many problems. Due to their intrinsic one-to-many property, current popular stochastic optimization approaches on temporal shaping may face the problems of long computing time or sometimes suggesting only one solution. Here we propose a real-time solver for one-to-many problems of temporal shaping, with the aid of a semi-supervised machine learning method, the conditional generative adversarial network (CGAN). We demonstrate that the CGAN solver can learn the one-to-many dynamics and is able to accurately and quickly predict the required dispersion terms for different custom temporal profiles. This machine learning-based solver is expected to have the potential for wide applications to one-to-many problems in other scientific fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号