全文获取类型
收费全文 | 10774篇 |
免费 | 271篇 |
国内免费 | 170篇 |
专业分类
化学 | 1277篇 |
晶体学 | 133篇 |
力学 | 146篇 |
综合类 | 11篇 |
数学 | 8584篇 |
物理学 | 1064篇 |
出版年
2023年 | 20篇 |
2022年 | 52篇 |
2021年 | 41篇 |
2020年 | 65篇 |
2019年 | 238篇 |
2018年 | 265篇 |
2017年 | 174篇 |
2016年 | 137篇 |
2015年 | 170篇 |
2014年 | 278篇 |
2013年 | 534篇 |
2012年 | 461篇 |
2011年 | 587篇 |
2010年 | 481篇 |
2009年 | 730篇 |
2008年 | 759篇 |
2007年 | 775篇 |
2006年 | 583篇 |
2005年 | 440篇 |
2004年 | 367篇 |
2003年 | 282篇 |
2002年 | 279篇 |
2001年 | 262篇 |
2000年 | 258篇 |
1999年 | 303篇 |
1998年 | 254篇 |
1997年 | 210篇 |
1996年 | 215篇 |
1995年 | 242篇 |
1994年 | 243篇 |
1993年 | 193篇 |
1992年 | 184篇 |
1991年 | 104篇 |
1990年 | 123篇 |
1989年 | 112篇 |
1988年 | 78篇 |
1987年 | 72篇 |
1986年 | 57篇 |
1985年 | 76篇 |
1984年 | 69篇 |
1983年 | 28篇 |
1982年 | 72篇 |
1981年 | 56篇 |
1980年 | 62篇 |
1979年 | 33篇 |
1978年 | 57篇 |
1977年 | 50篇 |
1976年 | 44篇 |
1975年 | 12篇 |
1973年 | 13篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
The color of a complex number is defined as the number of vertices of the convex hull of powers of that number. This induces a coloring of the unit disk. The structure of the set of points where the color changes is investigated here. It is observed that there is a connection between this fractal set and some family of trinomial equations. Three algorithms for coloring the unit disk are described, the last one (related to the Farey sequence) arising out of a conjecture. This conjecture is formulated and proved in this presentation. 相似文献
62.
Summary We consider the mixed finite element method for locally refined triangulations. A local projection operator
is defined to satisfy the commutation property that is required in the general theory of mixed methods. Our results can be applied to every known space of arbitrary order over rectangles or triangles. Optimal-order error estimates and superconvergence for the flux along the Gauss lines are established. 相似文献
63.
Summary We consider the finite element approximation of the 2D elasticity problem when the Poisson ratiov is close to 0.5. It is well-known that the performance of certain commonly used finite elements deteriorates asv0, a phenomenon calledlocking. We analyze this phenomenon and characterize the strength of the locking androbustness of varioush-version schemes using triangular and rectangular elements. We prove that thep-andh-p versions are free of locking with respect to the error in the energy norm. A generalization of our theory to the 3D problem is also discussed.The work of this author was supported in part by the Office of Naval Research under Naval Research Grant N00014-90-J-1030The work of this author was supported in part by the Air Force Office of Scientific Research, Air Force Systems Command, U.S. Air Force, under grant AFOSR 89-0252 相似文献
64.
We establish a result related to a theorem of de Boor and Jia [1]. Their theorem, in turn, corrected and extended a result of Fix and Strang [5] concerning controlled approximation. In our result, the approximating functions are not required to have compact support, but satisfy instead conditions on their behavior at . Our theorem includes some recent results of Jackson [6] and is closely related to the work of Buhmann [2].Communicated by Carl de Boor 相似文献
65.
Roy Mathias 《Numerische Mathematik》1992,63(1):213-226
LetM
n
denote the space ofn×n matrices. GivenX, ZM
n
define
相似文献
66.
It is an open question whether there is a strange attractor for the Henon mapping. We show that for certain maps close to
the Henon map there are strange attractors. 相似文献
67.
Franc Forstnerič 《Mathematische Annalen》1992,292(1):163-180
68.
Here we prove that every compact differential manifold has a smooth algebraic model defined over Q. In dimension 2 we find an algebraic model (may be singular) defined over Q and birational over Q to the projective plane. 相似文献
69.
70.
V. I. Levenshtein 《Acta Appl Math》1992,29(1-2):1-82
Finite and infinite metric spaces % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] that are polynomial with respect to a monotone substitution of variable t(d) are considered. A finite subset (code) W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is characterized by the minimal distance d(W) between its distinct elements, by the number l(W) of distances between its distinct elements and by the maximal strength (W) of the design generated by the code W. A code W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is called a maximum one if it has the greatest cardinality among subsets of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with minimal distance at least d(W), and diametrical if the diameter of W is equal to the diameter of the whole space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. Delsarte codes are codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with (W)2l(W)–1 or (W)=2l(W)–2>0 and W is a diametrical code. It is shown that all parameters of Delsarte codes W) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are uniquely determined by their cardinality |W| or minimal distance d(W) and that the minimal polynomials of the Delsarte codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are expansible with positive coefficients in an orthogonal system of polynomials {Q
i(t)} corresponding to % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. The main results of the present paper consist in a proof of maximality of all Delsarte codes provided that the system {Q
i)} satisfies some condition and of a new proof confirming in this case the validity of all the results on the upper bounds for the maximum cardinality of codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \]% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with a given minimal distance, announced by the author in 1978. Moreover, it appeared that this condition is satisfied for all infinite polynomial metric spaces as well as for distance-regular graphs, decomposable in a sense defined below. It is also proved that with one exception all classical distance-regular graphs are decomposable. In addition for decomposable distance-regular graphs an improvement of the absolute Delsarte bound for diametrical codes is obtained. For the Hamming and Johnson spaces, Euclidean sphere, real and complex projective spaces, tables containing parameters of known Delsarte codes are presented. Moreover, for each of the above-mentioned infinite spaces infinite sequences (of maximum) Delsarte codes not belonging to tight designs are indicated. 相似文献
|