首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1634篇
  免费   357篇
  国内免费   379篇
化学   982篇
晶体学   73篇
力学   90篇
综合类   60篇
数学   61篇
物理学   1104篇
  2024年   16篇
  2023年   44篇
  2022年   45篇
  2021年   52篇
  2020年   36篇
  2019年   49篇
  2018年   37篇
  2017年   58篇
  2016年   63篇
  2015年   79篇
  2014年   160篇
  2013年   137篇
  2012年   110篇
  2011年   133篇
  2010年   99篇
  2009年   141篇
  2008年   146篇
  2007年   90篇
  2006年   111篇
  2005年   109篇
  2004年   96篇
  2003年   67篇
  2002年   56篇
  2001年   73篇
  2000年   43篇
  1999年   34篇
  1998年   39篇
  1997年   20篇
  1996年   25篇
  1995年   33篇
  1994年   33篇
  1993年   19篇
  1992年   19篇
  1991年   21篇
  1990年   13篇
  1989年   21篇
  1988年   10篇
  1987年   14篇
  1986年   11篇
  1985年   5篇
  1983年   2篇
  1959年   1篇
排序方式: 共有2370条查询结果,搜索用时 843 毫秒
151.
变量选择是光谱分析领域一个重要的组成部分。为了克服传统区间选择法的缺点与不足,基于无信息变量消除法和岭极限学习机提出一种新型的变量选择与评价方法。首先,利用无信息变量消除法剔除整个光谱区间中无信息的波长点;其次,为了解决传统建模方法(偏最小二乘法、BP神经网络等)存在的共线性问题,采用岭极限学习机方法建立回归模型;最后,最佳的特征光谱波长点组合利用特征选择路径图和稀疏度-误差折中曲线进行确定。CO气体的浓度反演实验结果表明:(1)利用无信息变量消除法可以有效筛选出最能表征CO气体透过光谱的特征波长点;(2)岭极限学习机方法具有快速建模、避免共线性和高精度等优点(CO气体浓度反演模型的决定系数可达0.995);(3)特征选择路径图和稀疏度-误差折中曲线可以直观地帮助用户寻找出最佳的特征波长点组合。  相似文献   
152.
利用PASCO物理平台实验附件可组装性强的特征,设计与搭建了超声光栅实验装置,获得了清晰、直观的超声光栅衍射光强分布图,并利用极值查找等数据处理工具确定精确的衍射条纹位置.在此基础上,通过测量与计算得到了不同酒精溶液浓度下的超声波声速.  相似文献   
153.
作物生长的土壤中氧气浓度场的稳态数值模拟   总被引:1,自引:0,他引:1  
建立了一个描述土壤中热、湿、气耦合迁移的数学模型,对有冬小麦生长的圆柱形土壤床中的氧气浓度场进行 了数值模拟。结果表明,土壤床中的氧气浓度场与冬小麦的生长发育阶段、上壤的孔隙率以及土壤床的高度等因素密切相 关。  相似文献   
154.
作为一种原位、快速、无损坏的中红外光谱分析技术,ATR-FTIR已在很多工程领域得到越来越多的应用,尤其是针对结晶过程溶液浓度的原位实时测量。水是一种常用的结晶溶剂,在中红外波段具有强吸收峰,并且在不同温度下具有光谱吸收差异性,因而不能忽略溶剂水和温度对溶液浓度的中红外光谱测量带来的影响。以朗伯-比尔定律为基础,提出采用溶液光谱减去相应温度下的溶剂光谱的方法,从而能准确地测量溶液浓度。以L-谷氨酸溶液结晶过程为例,对L-谷氨酸水溶液的原始光谱数据、溶液光谱扣除常温(25℃)溶剂水的光谱数据以及溶液光谱对应温度扣除溶剂水的光谱数据分别进行建模。结果表明,提出的对应温度差谱法能有效消除溶剂水峰对溶质光谱测量的干扰,明显地降低了溶液浓度光谱标定模型的预测误差。该方法对提高原位ATR-FTIR光谱检测精度的实际应用具有一定的参考价值。  相似文献   
155.
荧光法测量SO2浓度是大气监测中常用的检测手段.双光路技术可以消除光源和光路的噪音干扰,但光电转换器件在激发光照射下产生的背景噪音也会影响定量分析的准确度.本文采用经验模态分解滤波算法降低检测中存在的各种噪音,在实现有效降噪的基础上较好地保存了有用的原始信号.仿真结果表明,针对SO2浓度检测系统,利用经验模态分解去噪后信号的信噪比达到204.273 6,均方误差为0.007 0.与小波去噪法相比,经验模态分解检测效果更佳.最后将经两组不同方法处理后的信号应用于气体检测系统中,实验数据的线性关系更好地验证了经验模态分解方法应用到浓度检测系统的可行性.  相似文献   
156.
银凭借其独特的性能,在医疗材料、摄影、电子、成像等行业中应用广泛。然而,银离子被列为最具毒性的重金属离子之一,会对环境以及人类的生命健康造成严重威胁。为了灵敏、特异性的检测水环境中的银离子浓度,利用纳米金的优良光学猝灭性以及双链核酸适体捕获银离子能力更强的优点,结合荧光能量共振转移原理,提出一种用于检测水环境中银离子浓度的荧光适体传感器。将修饰SH键的核酸适体与纳米金混合形成稳定的纳米结构,并加入标记有FAM的核酸适体,形成检测银离子浓度的工作溶液。当不存在银离子时由于不匹配碱基C-C之间的排斥力导致两条核酸适体不结合,反应体系中具有较强的荧光;当存在银离子时,双链核酸适体中不匹配的C-C能与银离子通过金属离子-碱基的相互作用形成稳定的C-Ag+-C碱基对,这种复合结构的产生会拉近纳米金和荧光基团之间的距离,使得荧光信号随着银离子浓度的增加而逐渐减弱。根据加入银离子前后荧光强度的变化可实现银离子浓度的检测。同时,为了提高传感器的灵敏性和稳定性,实验优化了工作溶液中纳米金与核酸适体的浓度比、氯化钠浓度、缓冲液的pH以及培养温度等参数。结果表明,当浓度为0.012 5 g·L-1的纳米金与5 μmol·L-1核酸适体的体积比为5∶1,NaCl浓度为260 mmol·L-1,缓冲液pH 7,培养温度为30 ℃时,工作溶液初始荧光强度最强,银离子检出限为10 nmol·L-1,相关系数为R2=0.99。此外,该传感器对银离子的浓度检测表现出较好的特异性,且具有操作简单、灵敏和不引入有毒溶剂等优点,在水环境中的银离子浓度检测领域有较好的应用前景。  相似文献   
157.
刘红利  郝玉英  许并社 《物理学报》2013,62(10):108504-108504
采用高温固相法制备了LiSrBO3:xEu3+ 荧光粉, 并通过XRD, 红外(FITR) 和荧光光谱(PL) 等对其表征. 结果表明, LiSrBO3: Eu3+ 荧光粉可被波长为395 nm 的紫外线和466 nm 的蓝光有效激发, 且发射主波长为612 nm (Eu3+的电偶极跃迁5D07F2) 的红光. 研究了Eu3+ 掺杂浓度对LiSrBO3: Eu3+ 材料发光强度的影响, Eu3+ 掺杂浓度为6% 时样品的发射强度最大, 并且证实Eu3+ 之间的能量传递机制为电偶极子- 电偶极子相互作用. Li+, Na+, K+ 作为电荷补偿剂的引入全部导致LiSrBO3: Eu3+ 材料发射强度增强, 其中, Li+ 的引入要优于Na+ 和K+. 少量Al3+的掺杂降低了Eu3+ 所处格位的对称性, 增强了Eu3+ 的612 nm 的电偶极发射, 改善了LiSrBO3: Eu3+ 红色材料的色纯度. 关键词: 白光发光二级管 光致发光 浓度猝灭 电荷补偿剂  相似文献   
158.
以掺杂4mol%Hf4+的LiNbO3:Fe:Hf系列晶体([Li]/[Nb]比变化)为研究对象,研究了系列晶体的可见吸收光谱,在632.8nm的写入光下晶体的衍射效率、灵敏度和抗光散射能力在不同[Li]/[Nb]下的变化规律.研究发现Hf4+的浓度达到阈值浓度后,随着[Li]/[Nb]比的增大,晶体的可见吸收边会发生红移,而且晶格中[Fe2+]/[Fe3+]也会增加,这就导致随着[Li]/[Nb]比的增加,样品的衍射效率逐渐减小,写入时间缩短,灵敏度增大.同时,在晶体中,随着[Li]/[Nb]的增大,陷阱中心Fe2Li+数量增大会使得晶体抗光散射能力减弱.  相似文献   
159.
利用单波长激光通过扬尘空间发生散射消光衰减的特性,设计了开放光程的颗粒物浓度检测方法及系统。该方法利用双峰正态分布模型模拟颗粒物粒径分布,实时计算一定空间范围内的扬尘颗粒物浓度,具有响应速度快、测量动态范围宽的优点,适合浓度高、变化快、空间范围大的扬尘颗粒物浓度测量。通过水溶胶模拟实验与烟尘实验验证了该方法的可行性。实验数据表明,系统量程可达0~400mg/m3,分辨率为0.05mg/m3,响应时间小于1s。  相似文献   
160.
提出内积的溶液浓度测定方法。该方法计算已知浓度溶液透光率曲线与0号溶液(浓度最低的溶液)透光率曲线的内积ρ,确定溶液的ρ-C曲线,然后测定未知溶液的透光率曲线,计算其与0号溶液透光率曲线的内积,并利用已建立好的ρ-C曲线进行插值以估计溶液浓度。由于该方法利用了透光率曲线的全部信息,因此对溶液浓度的估计精度较高。对K2Cr2O7溶液浓度的测定实验结果表明,该方法对溶液浓度的估计相对误差小于1.00%。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号