首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1632篇
  免费   340篇
  国内免费   207篇
化学   69篇
晶体学   5篇
力学   1141篇
综合类   43篇
数学   162篇
物理学   759篇
  2024年   23篇
  2023年   56篇
  2022年   83篇
  2021年   76篇
  2020年   81篇
  2019年   72篇
  2018年   52篇
  2017年   61篇
  2016年   77篇
  2015年   72篇
  2014年   116篇
  2013年   80篇
  2012年   75篇
  2011年   82篇
  2010年   70篇
  2009年   80篇
  2008年   86篇
  2007年   67篇
  2006年   78篇
  2005年   58篇
  2004年   80篇
  2003年   86篇
  2002年   68篇
  2001年   62篇
  2000年   61篇
  1999年   49篇
  1998年   32篇
  1997年   53篇
  1996年   40篇
  1995年   36篇
  1994年   40篇
  1993年   29篇
  1992年   20篇
  1991年   20篇
  1990年   18篇
  1989年   18篇
  1988年   16篇
  1987年   5篇
  1985年   1篇
排序方式: 共有2179条查询结果,搜索用时 0 毫秒
61.
CL-18的合成     
CL-18是根据TATB和BTF两种化合物的分子结构特征所设计并已合成的,其分子兼具TATB和BTF的分子特征,一方面,氨基的推电子效应使C-NO2键能增强,又由于氨基与硝基的氧原子间形成强的分子内和分子间氢键,更增强了分子的稳定性,因而具有优良的热稳定性和较低的感度。另一方面,分子中引入氧化呋咱基团,可明显提高化合物的密度和爆轰性能。在钝感冲击片雷管和钝感传爆药中具有潜在的应用前景。  相似文献   
62.
蓝宝石的冲击消光现象是高压领域中的研究热点.低压段(86 GPa范围内)的实验研究表明蓝宝石的冲击消光与晶向相关,但在高压段(压力范围:131255 GPa)是否也具有晶向相关性目前尚不清楚.为此,利用第一性原理方法,分别计算了八个不同晶向的蓝宝石理想晶体和含氧离子空位缺陷晶体在高压段的光吸收性质,结果发现:1)蓝宝石在高压段的冲击消光表现出明显的晶向效应,且该效应还随压力增大而增强;一步的数据分析可以看出,在冲击实验采用的波段内,a晶向的消光最弱(透明性最好),c晶向的消光最强与c晶向的消光接近,g晶向的消光要弱于s晶向的消光.鉴于此,如果在高压段开展加窗冲击波实验,建议选择a晶向或m晶向的蓝宝石作为其光学窗口.本文结果不仅有助于深入地认识蓝宝石在极端条件下的光学性质,而且对未来的实验研究有重要的参考作用.  相似文献   
63.
给出了基础激励下Timoshenko梁冲击失效准则设计方法,建立了基于Timoshenko梁的冲击动力学模型.通过求解系统运动方程并结合边界条件,给出了系统固有频率方程,给出了固有振型的计算方法.为了克服基础激励下冲击响应求解的困难,对Timoshenko梁的位移响应进行了假设,求解了系统的线位移和角位移冲击响应,进而得到了任意截面的内力,以及截面的最大von Mi⁃ses等效应力,基于von Mises屈服准则,给出了分别采用位移、速度和加速度确定失效准则的方法.典型算例的冲击响应计算结果表明,在20~5000 Hz频率范围内,算例中的Timoshenko梁存在3种失效模式,分别是根部、中部附近和末端发生屈服破坏.针对每种失效模式,分别给出了以最大可用位移幅值、速度幅值和加速度幅值表示的冲击失效准则.  相似文献   
64.
 在材料性质满足:(1)可用波恩-迈耶势描述其结合能;(2)自由电子对热能的贡献可忽略不计;以及(3)冲击波速度关系式可用直线关系描述的条件下,本文导出了一个用冲击绝热线数据直接计算该材料结合能和格临爱森物态方程的简便解析公式。给出了用本文方法计算Be,Al,Cu,Ta,U等十七种金属的冷能和冷压方程的结果。将本文结果与徐锡申等和Zharkov等的数值计算结果相比较,发现在冲击压缩测量的实验误差范围内,大多数金属的符合程度是比较好的,但Be,Ni和Pb三种金属除外。本文中对上述偏差的可能原因也做了讨论。  相似文献   
65.
 为研究强冲击状态下混入少量空气的甲烷气体的冲击状态参数,利用二级轻气炮加载技术,使加速到5 km/s的钨合金飞片撞击封装有常态下空气混入量依次为零(纯甲烷气体)、1%、5%、10%的甲烷-空气混合气体铝靶。采用六通道瞬态光学高温计记录冲击压缩气体的光辐射历程曲线,得到了相同初始条件下4种不同比例混合气体的冲击状态参数。结果表明,在强冲击压缩下,混合气体的冲击温度随着空气混入比例的增大而增高,冲击波后混合气体存在非平衡辐射过程。采用Saha电离平衡方程,对空气混入量为10%的混合气体的电离度进行了估算。结果表明,常态下空气含量Cair≤10%的甲烷 空气混合气体具有电探针保护能力。  相似文献   
66.
粗糙表面对非定常冲击射流传热的影响   总被引:2,自引:0,他引:2  
利用在射流驻点周围设置不同高度的圆环来模拟粗糙表面,进行非定常射流冲击换热的实验研究.非定常射流由一个特殊的质量流量控制装置产生,波形和频率可调.采用高度分别为1 mm,2 mm和3 mm的圆环,研究发现环高h=3 mm时,冲击射流流场发生了实质性的改变.对于流动形态没有发生实质改变的粗糙表面,在稳定射流冲击下,传热特性没有质的变化.然而,非定常射流冲击粗糙表面时,与其冲击光滑平板相比,传热特征有很大不同,传热强化系数总体上是削弱了,随着圆环高度的增加更为明显.  相似文献   
67.
采用时间分辨的高温计技术和Doppler Probe System (DPS)系统,本文测量了冲击压缩下蓝宝石的光谱辐亮度历史和粒子速度波剖面,并对其隐含的动态损伤的时间演化特征进行了研究。当冲击压力为~52GPa时,r切蓝宝石的光辐亮度值随时间呈线性增长,而高达58GPa时,则呈现出两段不同的线性增长特征,并且后者增长速率明显高于前者,表现出急剧增长行为。结合蓝宝石的粒子速度历史剖面结果可得,在整个观测时间内,光辐射观察区域并未受到来自飞片自由面或样品边侧的稀疏波干扰,仅受到冲击压缩波作用。这表明实测光辐射信号仅与蓝宝石在冲击压缩下的动态变形有关。将光辐亮度历史变化特征与固体材料的失效破坏理论结合分析,蓝宝石中可能发生了剪切带的贯穿失效现象。进一步的压力和晶向相关性研究结果显示,此失效破坏现象出现的弛豫时间随压力的升高而变短,并且r切蓝宝石比m切样品更长。本文对理解蓝宝石动态损伤机理具有指导意义。  相似文献   
68.
为了使激光冲击强化技术能较好地应用于TC6钛合金的发动机叶片,对TC6钛合金进行试验研究。通过X射线衍射仪、透射电子显微镜等测试技术分析了不同参数下TC6钛合金的微观组织变化,用显微硬度计和残余应力测试仪分别表征表层硬度和残余应力变化,并测试材料冲击后的振动高周疲劳性能。试验结果表明:激光冲击材料后表面组织得到明显细化,随着冲击次数的增加,先后出现了高密度位错、位错胞、亚晶和纳米晶。性能方面,表面硬度在冲击一次即可提高19%,硬度影响深度达到700 m;与此同时表面残余应力最高达到-608.5 MPa,在500 m深度上仍具有-100 MPa左右的应力存在。经三次冲击后,标准疲劳试片的疲劳极限提高近20%。  相似文献   
69.
通过三点弯动态冲击实验和数值模拟方法,研究了分支交错层状仿生复合材料的动态断裂韧性。首先设计并制备了分支交错层状仿贝壳复合材料试样,即将一种脆性刚性材料和一种橡胶类材料分别作为复合材料的硬质层和软胶层;随后采用改进的分离式Hopkinson压杆装置进行了三点弯冲击实验;接着讨论了初始冲击速度、硬质材料长宽比、软质材料层厚度对复合材料试样动态断裂行为的影响;最后采用ABAQUS有限元数值模拟,研究了不同宽度和不同冲击方向对复合材料试样动态断裂韧性和裂纹扩展的影响。结果表明:随着冲击速度和硬质材料长宽比增加、软胶层厚度减小,裂纹越倾向于沿直线扩展,反之,裂纹越倾向于绕过硬质材料沿着软胶层呈折线扩展;试样的峰值动载荷和起裂时间也随之增大。有限元模拟结果表明:随着结构总宽度的增大,试样断裂韧性增加,裂纹倾向于绕过硬质材料沿着软胶层扩展;采用实验设计的冲击方向时,试样的断裂韧性高于其他方向。  相似文献   
70.
流固耦合管路系统广泛应用于各种装备中,通常用来传递物质和能量或者动量.由于流固耦合效应,管壁在流体作用下易产生强烈的振动与噪声,对装备安全性、隐蔽性产生严重影响,甚至造成严重破坏.流固耦合管路振动抑制需求迫切,意义重大.声子晶体可以利用其带隙特性抑制特定频率范围内弹性波的传播,在减振降噪领域具有广泛的应用前景.本文基于声子晶体理论,研究了流固耦合条件下的布拉格声子晶体管路冲击振动传递特性.将传递矩阵法和有限元法相结合,计算了能带结构与带隙特性,重点考虑了流固耦合效应下,不同冲击激励条件下声子晶体管路振动特性,分析了流固耦合对声子晶体管路振动传递特性的影响.研究结果为流固耦合条件下管路系统的振动控制提供了技术参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号