首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2162篇
  免费   1027篇
  国内免费   589篇
化学   701篇
晶体学   474篇
力学   97篇
综合类   167篇
数学   809篇
物理学   1530篇
  2024年   15篇
  2023年   61篇
  2022年   55篇
  2021年   71篇
  2020年   55篇
  2019年   48篇
  2018年   50篇
  2017年   56篇
  2016年   65篇
  2015年   87篇
  2014年   208篇
  2013年   137篇
  2012年   152篇
  2011年   169篇
  2010年   184篇
  2009年   205篇
  2008年   248篇
  2007年   170篇
  2006年   205篇
  2005年   195篇
  2004年   158篇
  2003年   158篇
  2002年   132篇
  2001年   117篇
  2000年   88篇
  1999年   105篇
  1998年   83篇
  1997年   80篇
  1996年   72篇
  1995年   59篇
  1994年   52篇
  1993年   46篇
  1992年   42篇
  1991年   29篇
  1990年   39篇
  1989年   45篇
  1988年   10篇
  1987年   4篇
  1986年   8篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1959年   2篇
  1951年   1篇
排序方式: 共有3778条查询结果,搜索用时 265 毫秒
101.
本文采用电弧放电法,通过阳极棒与不锈钢片的共蒸发,制备了氮掺杂长竹节状碳纳米管。借助扫描电子显微镜(SEM)、场发射高分辨透射电子显微镜(HRTEM)及其附带能量色散X射线(EDX)光谱仪和电子能量损失谱(EELS)、透射电子显微镜(TEM)等表征方法,对产物的形貌、结构和组成进行表征。表征结果表明,氮掺杂长竹节状碳纳米管的长度在640~835nm之间,其内径在23~35nm之间,外径在28~47nm之间;且在每一节“竹节”与另一节“竹节”的连接处形成的内腔中均有一个黑色纳米颗粒,其直径尺寸以及产物中的氮掺杂长竹节状碳纳米管的含量均与熔化、蒸发的不锈钢片的面积有关。本文还对氮掺杂长竹节状碳纳米管的生长机理进行了简单的探讨。  相似文献   
102.
本文简要综述了金属-半导体异质结构纳米晶的设计、可控制备和物性研究的相关工作.设计了异相成核与生长、选择硫化和种子介导液相外延生长3种不同的方法并以此制备了多种金属-半导体异质结构纳米晶,对其中所涉及的反应机制进行了论述,并简要探讨了金属-半导体异质结构纳米晶的热稳定性、表面等离子共振活性、荧光特性以及异质界面的电荷转移和保持能力.  相似文献   
103.
We report a systematic study on wrinkling and CuO nanowires (NWs) growth in the thermal oxidation of copper foil. Copper foils with thickness of 0.5 mm were thermally oxidized in air at 500℃ for 0.5-10 h. It is found that all the samples have wrinkles and the size of the wrinkles increases with the oxidation time increasing. CuO NWs can grow on both the sidehill and hilltop of wrinkle. The CuO NWs on sidehill are longer and denser than those on hilltop. The growth direction of the CuO NWs on sidehill is not vertical to the substrate but vertical to their growth surfaces. The process of wrinkling and CuO NWs growth can be divided into three stages: undulating, voiding, and cracking. The CuO NWs on both sidehill and hilltop grow at the undulating stage. However, only the CuO NWs on sidehill grow and those on hilltop stop growing at the voiding and cracking stages because of the void in hilltop. The local electric field in a wrinkle at undulating stage was calculated, and it is found that the difference of local electric field strengths between hilltop and sidehill is small, which indicates that the predominant driving force for the diffusion of Cu ion during CuO NWs growth is internal stress.  相似文献   
104.
肖庆丰  胡锡炎  张磊 《数学杂志》2015,35(3):505-512
本文研究了矩阵方程AX=B的中心对称解.利用矩阵对的广义奇异值分解和广义逆矩阵,获得了该方程有中心对称解的充要条件以及有解时,最大秩解、最小秩解的一般表达式,并讨论了中心对称最小秩解集合中与给定矩阵的最佳逼近解.  相似文献   
105.
采用溶剂热合成技术,以氯化铜、硝酸铟和硫脲为反应物,十六烷基三甲基溴化铵(CTAB)为阳离子表面活性剂,草酸为还原剂,无水乙醇为溶剂,直接在掺氟的SnO2透明导电玻璃(FTO)衬底上合成CuInS2(CIS)薄膜.采用扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HRTEM)、X射线衍射(XRD)、拉曼光谱、能量色散谱(EDS)、紫外-可见(UV-Vis)反射光谱和透射光谱对样品的形貌、结构、成分和光学性能进行分析.结果表明,在适当的反应物浓度下,在FTO衬底上形成了垂直衬底生长的、具有良好结晶性能的黄铜矿结构的CIS纳米纸阵列薄膜.CIS薄膜中Cu,In,S的原子比为1.1∶1∶2.09,在紫外-可见和近红外波段具有良好的光吸收特性,禁带宽度约1.51 eV.结合不同反应时间制备的CIS薄膜的形貌、结构和成分分析,讨论了CIS纳米纸阵列薄膜的生长机理.  相似文献   
106.
纳米二氧化硅(SiO2)颗粒以其高硬度、高比表面积、高稳定、价格合理等优势被广泛应用于复合材料的制备中,获得的SiO2/聚合物复合材料通常具有优良的机械性能、很好的热稳定性以及增强的光学和电性能。近年来,随着聚合诱导自组装(PISA)的提出与发展,研究者们基于PISA发展了多种制备不同形貌聚合物纳米粒子的简便方法,为制备SiO2/聚合物复合材料提供了新的思路。作者调研了近十年来基于PISA制备SiO2/聚合物复合材料的相关研究,按照SiO2与聚合物的结合作用和复合机理的不同,创新性地将SiO2/聚合物复合材料的制备分为物理包封法、化学接枝法、超分子作用法和原位生长法。本综述重点论述复合材料的合成方法、主要性能及用途,同时分析各种复合方法的优缺点并对制备方法的未来发展做出展望,以期为相关领域科研工作者提供更清晰的脉络和更丰富的启示。  相似文献   
107.
"在非水介质中合成了纳米氧化锌,测定了纳米氧化锌的紫外吸收光谱,并用有效质量模型计算了粒子大小,开发并命名了一种称之为纳米粒子过饱和控制生长的技术,该技术涉及将小的纳米粒子悬浊液加入到大的粒子悬浊液中,结果因为不同大小粒子间的溶解度差异小的粒子将全部溶解,大的粒子将整体长大,大粒子悬浊液的粒子数将保持不变,大粒子的生长速度显著比Ostwald老化的高.该技术最显著的特征是只要最初两悬浊液粒子大小的差异足够大,分布不是太宽,则粒子大小的分布将会因为粒子如此长大而变窄."  相似文献   
108.
质子交换膜燃料电池(PEMFCs)电堆中阴极Pt基催化剂的高用量造成其成本居高不下,成为阻碍燃料电池汽车商业化推进的重要原因,因此开发低Pt、高活性的Pt基催化剂势在必行.Pt合金催化剂能够有效地降低Pt用量,并通过对合金颗粒的元素比例、晶面、粒径等实行精确调控,显著提升氧还原(ORR)催化活性.然而,目前常用的制备方法由于原料与制备成本高昂、过程复杂大都难以适应规模化生产需求.电化学方法通过控制施加的电流或电位控制晶体生长.在水体系中该方法已得到验证,但由于Pt化合物的热力学标准电极电位与过渡金属元素之间相差较大,且对于过渡金属来说,电负性大多小于铂,因此还原电位通常负于析氢电位,使得二者难以实现共沉积.有机体系中电位窗口比水体系大得多,Pt与电位较负的过渡金属可实现共沉积,采用小分子有机溶剂也可避免溶剂清洗问题,具有应用潜力.本文提出了一种简单的一步电沉积方法,选择易溶于水的N,N-二甲基甲酰胺(DMF)作为溶剂,将碳载体滴涂到玻碳电极上作为工作电极,通过电化学方法直接将Pt-Ni合金沉积到碳载体上,并利用物化表征与密度泛函理论(DFT)理论计算来探究共沉积机理.透射电镜表征结果表明,在不同的沉积电位下均可得到分散均匀、粒径适当的催化剂;且随着电位值降低,催化剂颗粒分散得更均匀,颗粒粒径不断减小.元素分布和晶面结果表明,铂镍元素均匀分布于颗粒中.所有样品均表现出优异的ORR性能,最高的面积比活性达到商业催化剂的6.85倍.将材料表征、电化学表征与DFT计算结合,建立起了铂镍合金生长过程的模型,并发现了有机体系中独特的成核-生长机理.将体系中的DMF换成超纯水,用同样的方法进行沉积,得到的催化剂颗粒团聚严重,说明DMF的使用能够避免颗粒团聚.在单独铂的体系中沉积发现,负载量极小,表明体系中镍前驱体的添加对于催化剂的沉积过程起到重要作用.电化学表征结果表明,在所选用的DMF有机体系中,镍的还原电位与铂的十分接近,但还原动力学更慢,趋向于先形成吸附原子后快速还原.由此可以推测,在二者合金的形成过程中,镍在碳载体表面的缓慢还原而形成的吸附原子能够成为铂还原的活性位点,从而降低了铂还原成核所需的能量,使得载体上的成核位点大大增加,这与DFT模拟结果一致.DFT建立了碳上镍的位点和铂的位点,分别在上面进行铂的还原,发现镍位点上比铂位点上更容易实现铂沉积.本文提出了铂镍共沉积的机理:在过电位(即还原能量)下,铂的还原动力学较镍稍快,于是铂先还原形成晶核,但难以达到生长的临界半径,于是单独铂体系中的沉积负载量很少.载体上还原的镍为铂还原提供了大量的活性位点,促进了铂还原,并与镍共沉积.Pt-Ni表面则进一步促进了铂的沉积和颗粒的生长.综上,本文提出了一种用于制备铂合金催化剂的有机电沉积体系,实现了单分散的碳载铂镍合金催化剂的一步制备.随后,本文将材料表征、电化学表征与DFT计算相结合,建立起了有机体系中铂镍合金成核-生长过程的机理模型.  相似文献   
109.
程蕾  张岱南  廖宇龙  范佳杰  向全军 《催化学报》2021,42(1):131-140,后插16-后插21
近年来,光催化CO2还原被视为一种既能解决能源短缺又能减少温室气体,改善人类生存环境的绿色新型技术.然而,由于CO2气体的相对稳定性,构建高催化活性和高选择性的催化体系仍然面临着巨大挑战.锌硫镉固溶体作为一种廉价的固溶类材料,具有吸光范围适宜、化学性质稳定以及能带结构可调控等特点,在光催化还原CO2的方面表现出巨大的潜力.本文发展了一种简单的原位自组装法合成三维分等级花状结构的Cd0.8Zn0.2S,主要包括Cd^2+和Zn^2+离子在含硫氛围下自组装成核状前体,然后以柠檬酸钠作为形貌诱导剂进一步组装生长,同时控制Cd2+/Zn2+摩尔比和反应时间以实现三维分等级花状Cd0.8Zn0.2S的合成.结果表明,三维分等级花状结构的Cd0.8Zn0.2S在光催化还原CO2的过程中表现出优异的催化活性和稳定性.其中,在光照3 h后,CO产量达到41.4μmol g^?1,大约是相同光照条件下Cd0.8Zn0.2S纳米颗粒的三倍(14.7μmol g^?1).此外,三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中展现出对光催化产物CO的较高选择性(89.9%),其中在没有任何牺牲剂或共催化剂作用下的TON为39.6.太赫兹时域光谱(THz-TDS)表明,这种三维分等级花状结构的Cd0.8Zn0.2S相较于Cd0.8Zn0.2S纳米颗粒更有利于对光的吸收,从而提高对光的有效利用率.原位漫反射傅立叶变化红外光谱表征分析揭示了三维分等级花状结构的Cd0.8Zn0.2S在光催化过程中表面吸附物质以及光催化还原中间体的存在及转化.通过实验数据和理论机理预测表明,该种三维分等级花状结构的Cd0.8Zn0.2S具有较高的电流密度和较好的载流子传输能力.基于这种三维的花状结构,使得Cd0.8Zn0.2S具有较大的比表面积和吸附位点,进一步提升体系的CO2吸附性能和光生电子的转移效率,从而有效提高光催化CO2还原的活性.  相似文献   
110.
基于金属有机框架材料MIL?53(Al),制备出多孔碳原位生长碳纳米管(CNTs)的碳复合材料(C?MIL?53(Al)和C?Co@MIL?53(Al))。得益于MIL?53(Al)和CNTs的复合结构以及CoF2的形成,C?Co@MIL?53(Al)复合材料作为超级电容器电极时,在0.5 A·g-1电流密度下展现出了高比电容(240.1 F·g-1),并且经过2000次充放电循环后表现出良好的循环稳定性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号