全文获取类型
收费全文 | 2878篇 |
免费 | 702篇 |
国内免费 | 87篇 |
专业分类
化学 | 62篇 |
晶体学 | 6篇 |
力学 | 66篇 |
综合类 | 26篇 |
数学 | 9篇 |
物理学 | 3498篇 |
出版年
2024年 | 14篇 |
2023年 | 66篇 |
2022年 | 66篇 |
2021年 | 98篇 |
2020年 | 54篇 |
2019年 | 86篇 |
2018年 | 29篇 |
2017年 | 86篇 |
2016年 | 82篇 |
2015年 | 96篇 |
2014年 | 216篇 |
2013年 | 150篇 |
2012年 | 172篇 |
2011年 | 213篇 |
2010年 | 178篇 |
2009年 | 192篇 |
2008年 | 235篇 |
2007年 | 182篇 |
2006年 | 170篇 |
2005年 | 147篇 |
2004年 | 169篇 |
2003年 | 131篇 |
2002年 | 115篇 |
2001年 | 105篇 |
2000年 | 112篇 |
1999年 | 80篇 |
1998年 | 77篇 |
1997年 | 53篇 |
1996年 | 61篇 |
1995年 | 33篇 |
1994年 | 37篇 |
1993年 | 34篇 |
1992年 | 25篇 |
1991年 | 26篇 |
1990年 | 37篇 |
1989年 | 18篇 |
1988年 | 13篇 |
1987年 | 9篇 |
排序方式: 共有3667条查询结果,搜索用时 15 毫秒
21.
22.
为实现新型机载光电跟踪平台轻量化、小型化与高精度化设计,提出一种应用于机载平台下的基于双液晶偏振光栅光束偏转机构的光电跟瞄方法。建立了基于视轴解耦的双液晶偏振光栅光束跟瞄反向公式模型,该模型只需输入跟踪点方位与俯仰角度坐标即可计算出两共轴光栅旋转位置,通过两共轴光栅的旋转来进行光束偏转;相比传统双棱镜光束偏转模型反向公式,该模型具有模型简单、运算快速、精度较高等优点;将基于视轴解耦的双液晶偏振光栅光束偏转反向公式模型与线性二次型调节器控制算法相结合嵌入控制板以实现跟踪功能。通过试验检测了系统跟踪性能结果表明:该双液晶偏振光栅跟踪模型在载体扰动的情况下可以实现目标跟瞄,在动态跟瞄实验中,采用视轴解耦与线性二次型调节器相结合的控制策略使得系统跟瞄精度得到明显提升,相比比例积分微分控制器系统方位与俯仰轴实时跟踪残差峰峰值均下降40%以上,在2°@0.5 Hz与5°@0.2 Hz载体扰动情况下双轴脱靶量均方根值综合统计数值分别达到328μrad与289μrad,验证了所提跟瞄模型的有效性。 相似文献
23.
太阳上层大气,即日冕、过渡区和色球,是由炽热的高度动态的磁化等离子体构成,其中高度电离的离子发射出丰富的极紫外谱线。空间太阳极紫外光谱成像观测对于捕获太阳上层大气中爆发活动的动态物理演化过程,以及实现对大气等离子体特征参数的精确测量具有重要的意义。然而现有的极紫外光谱成像仪器只能针对太阳上层大气的一个或两个目标区域进行成像观测,缺乏采用单一仪器对整个太阳上层大气区域在大空间和宽波段尺度范围内的光谱进行诊断的能力,严重制约了人们对太阳爆发活动中的能量及物质输运过程的理解。为了利用单个仪器实现对日冕、过渡区和色球的高分辨率同时诊断观测,本文提出并设计了一款同时工作在17~21 nm、70~80 nm和95~105 nm三个波段的太阳极紫外成像光谱仪,该仪器基于非罗兰圆结构下的椭球面变线距(EVLS)光栅像差校正理论,采用狭缝扫描式成像光谱结构,实现了具有大离轴狭缝视场的高空间、高光谱分辨的消像散光谱成像。基于蒙特卡罗统计模拟方法对太阳极紫外三波段成像光谱仪的最优模型开展光线追迹仿真实验,仿真结果表明,所设计的成像光谱仪取得了良好的光栅像差校正效果,系统空间分辨率优于0.6″,光谱分辨率在1... 相似文献
24.
为满足偏振光谱成像探测中对于大视场、宽谱段技术要求,设计了一种基于偏振强度调制技术(PSIM)的宽谱段大视场偏振光谱成像仪。针对前置望远镜组,文中对现有国内玻璃材料消色差分析,优选了可见至短波红外的复消色差玻璃,通过控制镜组中PSIM模块光线角度,实现大视场内在PSIM模块上的入射角度需求。结合分析结果,采用光学设计软件优化设计。设计结果表明,前置望远系统能够实现波段为400~1 700 nm,视场角为72°,焦距为20 mm, F数为4的高质量成像,全谱段内探测器截止频率处传递函数优于0.4, PSIM模块上最大入射角度为±4.99°,有效保证了各视场内偏振调制的一致性。后置光谱分光系统采用基于Offner结构的凸面光栅,优化结果显示各波段点列图均小于一个像元,在探测器奈奎斯特频率处中心波长的MTF达到0.6,各项指标均满足设计要求。本文对于基于PSIM宽谱段偏振光谱成像仪器的工程化具有很重要的现实意义,对宽谱段光学系统消色差设计也具有一定指导意义。 相似文献
25.
张飞雁 《宁波大学学报(理工版)》2006,19(1):95-97
分析用传统的马赫-曾德干涉光路拍摄全息光栅时所得光栅质量不高的原因.对全息光栅的拍摄光路提出了改进方法,并对光栅的像差进行分析和理论推导. 相似文献
26.
实验验证了一种通过将氧化石墨烯分散液沉积在长周期光纤光栅的全光控制的相关研究。通过外加的垂直泵浦光的作用,氧化石墨烯吸收泵浦光产生热量,改变长周期光纤光栅的包层模式的相位差,由于热膨胀的作用改变了氧化石墨烯所覆盖部分的光栅周期,使得谐振谱发生了移动,其最大调制深度可达10.6 dB,谐振谱最大可红移12.8 nm。通过实验发现,沉积相同浓度氧化石墨烯分散液的次数影响实验结果,通过在相同光栅的相同位置分别沉积三次,发现沉积三次可以在光纤表面获得更加均匀的氧化石墨烯膜,进行了时间响应的测试,其中沉积三次后的长周期光纤光栅的响应速度可达0.61 ms,沉积多次氧化石墨烯分散液可以在光纤表面沉积得更加平整均匀,从而获得更大的导热性能。 相似文献
27.
为解决微创手术软体机器人的形状实时监测问题,将刻有三个光纤布拉格光栅的单根光纤植入软体操作器中,利用其研究柔性硅胶软体操作器光纤传感和三维形状重构方法。进行了软体操作器的结构设计及模型建立,并对光纤光栅波长漂移量和软体操作器弯曲曲率之间的关系进行了理论分析;通过实验验证了软体操作器结构设计及其模型建立的有效性,测试了软体操作器不同弯曲状态下三个FBG传感器的反射谱特征及其变化规律;通过分析三个FBG传感器的中心波长漂移量,利用线性插值算法计算出软体操作器在不同弯曲状态下的曲率等参数,并结合曲线拟合方法实现软体操作器的三维形状重构。实验结果表明:植入式光纤光栅传感方法可以实现硅胶软体手术操作器的三维形状传感,在微创外科手术领域具有广阔的应用前景。 相似文献
28.
粘贴于受弯基体表面的光纤布拉格光栅传感器测量应变与基体真实应变之间存在误差,因此研究光纤布拉格光栅传感器的变形机理、分析测量应变与真实应变之间的关系是目前的研究热点.首先研究光纤布拉格光栅传感器与基体之间的相互作用机理,然后,利用有限元解、实验值和理论解进行对比验证,并分析产生误差的原因.最后,通过参数分析研究弹性模量、厚度、粘结长度等参数对光纤布拉格光栅传感器测量效果的影响.结果表明有限元解、实验值和理论解具有相同的变化趋势,有限元解与理论解的误差在2%以内,测量值与理论解的误差在7%以内.平均应变传递率随着基体弹性模量的增大、粘结长度的增长而逐渐增大,随粘结层弹性模量的减小、粘结层厚度的增大而逐渐减小.该理论对应用于受弯基体应变测量的光纤布拉格光栅传感器的设计具有一定的指导意义. 相似文献
29.
研究了背电极金属Al膜上二维ZnO:Al光栅的制备及其反射光谱特性.在厚度为300 nm的Al膜上溅射80 nm ZnO:Al薄膜,旋涂AZ5206光刻胶,用波长为325 nm的激光进行光刻制作光栅掩模.采用溶脱-剥离法在Al衬底上制备周期(624~1250 nm)和槽深(100~300 nm)可独立调控的ZnO:Al二维光栅.表面形貌采用原子力显微镜和扫描电镜观察,反射光谱用带积分球的分光光度计测试,双向反射分布函数用散射仪测量.结果表明,300 nm Al膜上织构二维ZnO:Al光栅背电极结构,当光栅槽深为228 nm,周期从624 nm增加到986 nm时,背电极总反射率、漫反射率以及雾度均随光栅周期增大而显著增加,而当周期从986 nm增加到1250 nm时,总反射率、漫反射率以及雾度略有增加.双向反射分布函数测试结果进一步证实了上述实验结果,即随着周期增大,漫反射峰值越大,衍射峰个数也增多.提示背反电极上槽深为228 nm、周期为986 nm的二维ZnO:Al光栅具有较好的散射效果,其中漫反射占总反射的百分比为45%. 相似文献
30.
为了研究史密斯-帕塞尔自由电子激光的输出频率和光栅槽深、光栅槽长、光栅槽宽的关系,对于基于矩形光栅的史密斯-帕塞尔自由电子激光利用粒子模拟软件进行模拟和理论分析。首先,利用粒子模拟软件模拟对于基于矩形光栅的史密斯-帕塞尔自由电子激光进行了研究,发现史密斯-帕塞尔自由电子激光的输出频率随光栅槽深、光栅槽长、光栅槽宽的增大而减少。接着,对史密斯-帕塞尔自由电子激光的光栅槽进行了理论分析,发现每个光栅槽都可以等效为一个LC谐振电路,并发现在史密斯-帕塞尔自由电子激光中存在两种辐射,一种是史密斯-帕塞尔辐射,另一种是LC振荡辐射。最后,对光栅槽的LC振荡辐射进行了估算,发现史密斯-帕塞尔自由电子激光输出频率的模拟值与光栅槽的LC振荡辐射估算值的数量级均为102 GHz,且变化规律上一致。据此推测决定史密斯-帕塞尔自由电子激光输出频率的应该是光栅槽,而不是谐振腔。 相似文献