首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24349篇
  免费   876篇
  国内免费   974篇
化学   7995篇
晶体学   974篇
力学   612篇
综合类   100篇
数学   12727篇
物理学   3791篇
  2023年   97篇
  2022年   184篇
  2021年   209篇
  2020年   268篇
  2019年   535篇
  2018年   543篇
  2017年   443篇
  2016年   459篇
  2015年   412篇
  2014年   736篇
  2013年   1129篇
  2012年   703篇
  2011年   1461篇
  2010年   1439篇
  2009年   1698篇
  2008年   1627篇
  2007年   1667篇
  2006年   1372篇
  2005年   1183篇
  2004年   1291篇
  2003年   1038篇
  2002年   910篇
  2001年   676篇
  2000年   582篇
  1999年   500篇
  1998年   434篇
  1997年   410篇
  1996年   524篇
  1995年   426篇
  1994年   482篇
  1993年   404篇
  1992年   332篇
  1991年   200篇
  1990年   168篇
  1989年   170篇
  1988年   129篇
  1987年   155篇
  1986年   146篇
  1985年   171篇
  1984年   116篇
  1983年   64篇
  1982年   107篇
  1981年   101篇
  1980年   84篇
  1979年   86篇
  1978年   81篇
  1977年   91篇
  1976年   67篇
  1974年   28篇
  1973年   25篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
991.
Necessary and sufficient conditions are established in this paper for the existence of positive- and/or negative-definite solutions to the algebraic Riccati equation with indefinite coefficient. An iterative procedure is also given for computing such a solution.Project supported by the National Science Foundation of China and by the special program of the State Education Commission of China under grant 9033507.  相似文献   
992.
In this paper we develop a new method to obtain identities in a group algebraGF(p)G if an abelian difference set of ordern0 (modp) exists inG. We give an explicit formula ifp 2 orp 3 is the exactp-power dividingn. This generalizes the approach of Wilbrink, Arasu and the author. The proof presented here uses some knowledge about field extensions of thep-adic numbers.  相似文献   
993.
We show that the maximum number of edges boundingm faces in an arrangement ofn line segments in the plane isO(m 2/3 n 2/3+n(n)+nlogm). This improves a previous upper bound of Edelsbrunner et al. [5] and almost matches the best known lower bound which is (m 2/3 n 2/3+n(n)). In addition, we show that the number of edges bounding anym faces in an arrangement ofn line segments with a total oft intersecting pairs isO(m 2/3 t 1/3+n(t/n)+nmin{logm,logt/n}), almost matching the lower bound of (m 2/3 t 1/3+n(t/n)) demonstrated in this paper.Work on this paper by the first and fourth authors has been partially supported by Office of Naval Research Grant N00014-87-K-0129, by National Science Foundation Grants DCR-83-20085 and CCR-89-01484. Work by the first author has also been supported by an AT&T Bell Laboratories Ph.D. scholarship at New York University and by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center (NSF-STC88-09648). Work by the second author has been supported by NSF under Grants CCR-87-14565 and CCR-89-21421. Work by the fourth author has additionally been supported by grants from the U.S.-Israeli Binational Science Foundation, the NCRD (the Israeli National Council for Research and Development) and the Fund for Basic Research in Electronics, Computers and Communication, administered by the Israeli National Academy of Sciences.  相似文献   
994.
Summary Let (Q) be the statistical experiment based on the observation of an unknown function in the presence of an additive noise process with distributionQ. The (possible) loss of information whenQ is replaced by some other noise distributionP is measured by the deficiency of (P) relative to (Q). This deficiency and its relation to the variational distance ofP andQ are studied mainly for Gaussian noise processes. Gaussian diffusion processes and special set-indexed processes are treated in detail.Research supported by a Heisenberg grant of the Deutsche Forschungsgemeinschaft  相似文献   
995.
For each positive integerk, we consider the setA k of all ordered pairs [a, b] such that in everyk-graph withn vertices andm edges some set of at mostam+bn vertices meets all the edges. We show that eachA k withk2 has infinitely many extreme points and conjecture that, for every positive , it has only finitely many extreme points [a, b] witha. With the extreme points ordered by the first coordinate, we identify the last two extreme points of everyA k , identify the last three extreme points ofA 3, and describeA 2 completely. A by-product of our arguments is a new algorithmic proof of Turán's theorem.  相似文献   
996.
Jeff Kahn 《Combinatorica》1992,12(4):417-423
Letn(k) be the least size of an intersecting family ofk-sets with cover numberk, and let k denote any projective plane of orderk–1.Theorem There is a constant A such that ifH is a random set ofm Aklogk lines from k then Pr(H<)0(k).Corollary If there exists a k thenn(k)=O(klogk). These statements were conjectured by P. Erds and L. Lovász in 1973.Supported in part by NSF-DMS87-83558 and AFOSR grants 89-0066, 89-0512 and 90-0008  相似文献   
997.
Toeplitz and Hankel type operators on the upper half-plane   总被引:3,自引:0,他引:3  
An orthogonal decomposition of admissible wavelets is constructed via the Laguerre polynomials, it turns to give a complete decomposition of the space of square integrable functions on the upper half-plane with the measurey dxdy. The first subspace is just the weighted Bergman (or Dzhrbashyan) space. Three types of Ha-plitz operators are defined, they are the generalization of classical Toeplitz, small and big Hankel operators respectively. Their boundedness, compactness and Schatten-von Neumann properties are studied.Research was supported by the National Natural Science Foundation of China.  相似文献   
998.
Finite and infinite metric spaces % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] that are polynomial with respect to a monotone substitution of variable t(d) are considered. A finite subset (code) W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is characterized by the minimal distance d(W) between its distinct elements, by the number l(W) of distances between its distinct elements and by the maximal strength (W) of the design generated by the code W. A code W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] is called a maximum one if it has the greatest cardinality among subsets of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with minimal distance at least d(W), and diametrical if the diameter of W is equal to the diameter of the whole space % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. Delsarte codes are codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with (W)2l(W)–1 or (W)=2l(W)–2>0 and W is a diametrical code. It is shown that all parameters of Delsarte codes W) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are uniquely determined by their cardinality |W| or minimal distance d(W) and that the minimal polynomials of the Delsarte codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \] % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] are expansible with positive coefficients in an orthogonal system of polynomials {Q i(t)} corresponding to % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\]. The main results of the present paper consist in a proof of maximality of all Delsarte codes provided that the system {Q i)} satisfies some condition and of a new proof confirming in this case the validity of all the results on the upper bounds for the maximum cardinality of codes W % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGGipm0dc9vqaqpepu0xbbG8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOHI0maaa!36D8!\[ \subseteq \]% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xa8nbaa!427C!\[\mathfrak{M}\] with a given minimal distance, announced by the author in 1978. Moreover, it appeared that this condition is satisfied for all infinite polynomial metric spaces as well as for distance-regular graphs, decomposable in a sense defined below. It is also proved that with one exception all classical distance-regular graphs are decomposable. In addition for decomposable distance-regular graphs an improvement of the absolute Delsarte bound for diametrical codes is obtained. For the Hamming and Johnson spaces, Euclidean sphere, real and complex projective spaces, tables containing parameters of known Delsarte codes are presented. Moreover, for each of the above-mentioned infinite spaces infinite sequences (of maximum) Delsarte codes not belonging to tight designs are indicated.  相似文献   
999.
George Markowsky 《Order》1992,9(3):265-290
This paper studies certain types of join and meet-irreducibles called coprimes and primes. These elements can be used to characterize certain types of lattices. For example, a lattice is distributive if and only if every join-irreducible is coprime. Similarly, a lattice is meet-pseudocomplemented if and only if each atom is coprime. Furthermore, these elements naturally decompose lattices into sublattices so that often properties of the original lattice can be deduced from properties of the sublattice. Not every lattice has primes and coprimes. This paper shows that lattices which are long enough must have primes and coprimes and that these elements and the resulting decompositions can be used to study such lattices.The length of every finite lattice is bounded above by the minimum of the number of meet-irreducibles (meet-rank) and the number of join-irreducibles (join-rank) that it has. This paper studies lattices for which length=join-rank or length=meet-rank. These are called p-extremal lattices and they have interesting decompositions and properties. For example, ranked, p-extremal lattices are either lower locally distributive (join-rank=length), upper locally distributive (meet-rank=length) or distributive (join-rank=meet-rank=length). In the absence of the Jordan-Dedekind chain condition, p-extremal lattices still have many interesting properties. Of special interest are the lattices that satisfy both equalities. Such lattices are called extremal; this class includes distributive lattices and the associativity lattices of Tamari. Even though they have interesting decompositions, extremal lattices cannot be characterized algebraically since any finite lattice can be embedded as a subinterval into an extremal lattice. This paper shows how prime and coprime elements, and the poset of irreducibles can be used to analyze p-extremal and other types of lattices.The results presented in this paper are used to deduce many key properties of the Tamari lattices. These lattices behave much like distributive lattices even though they violate the Jordan-Dedekind chain condition very strongly having maximal chains that vary in length from N-1 to N(N-1)/2 where N is a parameter used in the construction of these lattices.  相似文献   
1000.
The first property is a refinement of earlier results of Ch. de la Vallée Poussin, M. Brelot, and A. F. Grishin. Let w=u–v with u, v superharmonic on a suitable harmonic space (for example an open subset of R n ), and let [w]=[u]–[v] denote the associated Riesz charge. If w0, and if E denotes the set of those points of at which the lim inf of w in thefine topology is 0, then the restriction of [w] to E is 0. Another property states that, if e denotes a polar subset of such that the fine lim inf of |w| at each point of e is finite, then the restriction of [w] to e is 0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号