首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6506篇
  免费   1038篇
  国内免费   688篇
化学   2643篇
晶体学   98篇
力学   1025篇
综合类   75篇
数学   1375篇
物理学   3016篇
  2024年   7篇
  2023年   47篇
  2022年   114篇
  2021年   113篇
  2020年   173篇
  2019年   206篇
  2018年   189篇
  2017年   262篇
  2016年   315篇
  2015年   356篇
  2014年   343篇
  2013年   504篇
  2012年   368篇
  2011年   430篇
  2010年   304篇
  2009年   382篇
  2008年   387篇
  2007年   394篇
  2006年   387篇
  2005年   333篇
  2004年   285篇
  2003年   312篇
  2002年   298篇
  2001年   252篇
  2000年   251篇
  1999年   229篇
  1998年   195篇
  1997年   144篇
  1996年   124篇
  1995年   97篇
  1994年   67篇
  1993年   48篇
  1992年   62篇
  1991年   38篇
  1990年   30篇
  1989年   27篇
  1988年   21篇
  1987年   12篇
  1986年   19篇
  1985年   25篇
  1984年   20篇
  1983年   8篇
  1982年   12篇
  1981年   16篇
  1980年   7篇
  1979年   8篇
  1978年   3篇
  1977年   2篇
  1974年   2篇
  1957年   2篇
排序方式: 共有8232条查询结果,搜索用时 140 毫秒
971.
A lotus-effect coating was fabricated by wrapping micro-silica and nano-silica with polyurethane (PU) and subsequent spraying. The coating shows the similar self-cleaning property as lotus leaves: the contact angle is as large as 168° and the sliding angle is as low as 0.5°. Surface morphology of the coating was studied with scanning electron microscopy and atomic force microscopy. The composite coating shows the similar structure as lotus leaves.  相似文献   
972.
A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3° to 30 ± 4° treated at 100 °C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 °C for 3 h. Hydrophilic groups such as carbonyl (CO) and hydroxyl (OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K0.27MnO2·0.54H2O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.  相似文献   
973.
A novel strong water-repellent alumina thin film is fabricated by chemically adsorbing stearic acid (STA) layer onto the porous and roughened aluminum film coated with polyethyleneimine (PEI). The formation process and the structure of the strong water-repellent alumina film are investigated by means of contact angle measurement and atomic force microscope (AFM). Results show that the water contact angles for the alumina films increase with the increase of the immersion time in the boiling water, and meanwhile, the roughness of the alumina films increases with the dissolution of the boehmite in the boiling water. Finally, the strong water-repellent film with a high water contact angle of 139.1° is obtained when the alumina films have distinct roughened morphology with some papillary peaks and porous structure. Moreover, both the roughened structure and the hydrophobic materials of the STA endow the alumina films with the strong water-repellence.  相似文献   
974.
In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32° from 12.71° and the whiskers surface was changed from hydrophilic to lipophilic.  相似文献   
975.
Contact angles and surface energy of wood, as well as interfacial shear strength between wood and polyvinyl chloride (PVC) were investigated and used to monitor the modifications generated on the surfaces of wood treated with a copper ethanolamine solution. An increase in surface energy of wood after treatments promotes wetting of PVC on wood surfaces. Improved interfacial shear strength between treated wood and PVC matrix can be attributed to the formation of a stronger wood-PVC interphase. This suggests that treatment may be used to improve the adhesion between wood surface and PVC in the formulation of wood fiber composites to yield products with enhanced mechanical properties and better biological and physical performance against decay and insect destroying wood.  相似文献   
976.
The lotus-leaf-like superhydrophobic copper was fabricated by a facile two-step method without the chemical modification, on which the water contact angle can reach 158° and the water-sliding angle is less than 10°. Reversible superhydrophobicity to superhydrophilicity transition was observed and controlled by alternation of UV irradiation and dark storage. More interestingly, the superhydrophobic surface exhibits superoleophilicity and all those properties can be well used in reversible switch, separating the water and oil and so on.  相似文献   
977.
Antimicrobial property of chalcone coated high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP) and polyurethane (PU) against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa is reported here. The presence of chalcone on the surface was confirmed from fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Bacterial adhesion decreased considerably on all the coated surfaces. Bacterial adhesion was highest on PU surface (most hydrophobic) and lowest on HDPE (most hydrophilic) surface. Chalcone seems to damage the membrane of the bacteria as well as exhibit slimicidal activity. Reasonably good correlation was observed between the CFU (Colony Forming Units) ratio (it is defined as the ratio of CFU on coated surface to the chalcone uncoated surface) at the 24th hour against both hydrophobicity of the microorganism and roughness of the coated polymeric surfaces. Increasing roughness of the polymer and hydrophobicity of the microorganisms were positively and negatively correlated respectively with CFU ratio. Hence, the chalcone coated polymers can be used in the development of newer biomaterials.  相似文献   
978.
Two facile coating techniques, gravitational sediment and spin coating, were applied for the creation of silica sphere stacking layers with different textures onto glass substrates that display various sliding abilities toward liquid drops with different surface tensions, ranged from 25.6 to 72.3 mN/m. The resulting silica surface exhibits oil repellency, long-period durability > 30 days, and oil sliding capability. The two-tier texture offers a better roll-off ability toward liquid drops with a wide range of γL, ranged from 30.2 to 72.3 mN/m, i.e., when the sliding angle (SA) < 15°, the oil droplet start to roll off the surface. This improvement of sliding ability can be ascribed to the fact that the two-tier texture allows for air pockets (i.e., referred to as the Cassie state), thus favoring the self-cleaning ability. Taking Young-Duprè equation into account, a linearity relationship between sine SA and work of adhesion (Wad) appears to describe the sliding behavior within the Wad region: 2.20-3.03 mN/m. The smaller Wad, the easier drop sliding (i.e., the smaller SA value) takes place on the surfaces. The Wad value ∼3.03 mN/m shows a critical kinetic barrier for drop sliding on the silica surfaces from stationary to movement states. This work proposes a mathematical model to simulate the sliding behavior of oil drops on a nanosphere stacking layer, confirming the anti-oil contamination capability.  相似文献   
979.
Droplet wetting on two parallel filaments may assume a barrel-shaped morphology or a liquid bridge depending upon the filament diameter and spacing, droplet volume, and contact angle. This paper is aimed to examine the dependency of droplet wetting length upon the above parameters. In the process, morphology of either a barrel-shaped droplet or a liquid bridge sitting on two parallel filaments is determined numerically by using surface finite element method (SFEM). Variation of wetting length with contact angle is examined at varying droplet volume, filament spacing, and droplet morphology. It is found that the droplet wetting length increases with decreasing filament spacing ratio as well as contact angle while it also increases with the growth of droplet volume. The dependency of wetting length upon contact angle behaves sensitive to filament spacing in the case of stable liquid bridges, while it exhibits nearly constant sensitivity to the contact angle in the case of barrel-shaped droplets. The quantitative relations yielded in this study can be considered as characteristic curves applicable for a variety of droplet-on-filament systems, particularly useful to wetting property characterization of filaments, micro liquid delivery, biological cell manipulation, etc.  相似文献   
980.
Previous works on the convergence of numerical methods for the Boussinesq problem were conducted, while the optimal L2‐norm error estimates for the velocity and temperature are still lacked. In this paper, the backward Euler scheme is used to discrete the time terms, standard Galerkin finite element method is adopted to approximate the variables. The MINI element is used to approximate the velocity and pressure, the temperature field is simulated by the linear polynomial. Under some restriction on the time step, we firstly present the optimal L2 error estimates of approximate solutions. Secondly, two‐level method based on Stokes iteration for the Boussinesq problem is developed and the corresponding convergence results are presented. By this method, the original problem is decoupled into two small linear subproblems. Compared with the standard Galerkin method, the two‐level method not only keeps good accuracy but also saves a lot of computational cost. Finally, some numerical examples are provided to support the established theoretical analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号