首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2057篇
  免费   160篇
  国内免费   95篇
化学   2001篇
晶体学   10篇
力学   27篇
综合类   2篇
数学   9篇
物理学   263篇
  2024年   5篇
  2023年   14篇
  2022年   38篇
  2021年   53篇
  2020年   56篇
  2019年   60篇
  2018年   61篇
  2017年   76篇
  2016年   112篇
  2015年   97篇
  2014年   108篇
  2013年   242篇
  2012年   107篇
  2011年   137篇
  2010年   123篇
  2009年   146篇
  2008年   175篇
  2007年   134篇
  2006年   136篇
  2005年   138篇
  2004年   103篇
  2003年   95篇
  2002年   49篇
  2001年   19篇
  2000年   9篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
排序方式: 共有2312条查询结果,搜索用时 0 毫秒
91.
新环氧树脂纳米复合材料的合成和结构研究   总被引:1,自引:0,他引:1  
以具有层状硅酸盐结构的累托石(REC)为主体,以烷基季铵盐为改性剂合成了有机累托石(OREC),以有机累托石和环氧树脂复合,制备出纳米复合材料。累托石含量在0.8wt.% 时,纳米复合材料具有最佳力学和热学性能,冲击强度增加到65.6 kJm-2,断裂伸长率从4.7 %增加到20.2 %,玻璃化转变温度提高到 197.9 ℃。用X-小角衍射法、透射电镜和红外吸收光谱研究了材料的微观结构,XRD 衍射图显示,未经处理REC 的层间距d001 = 2. 2 nm,经有机改性后,累托石片层间距扩大到2.8 nm,与环氧树脂复合后,其层间距扩大到4.2 nm 左右,FT-IR图显示,有机累托石中出现十六胺的特征吸收峰,TEM照片显示该复合材料是一种纳米复合材料。  相似文献   
92.
Summary The influence of calcium carbonate nanoparticles with different shapes (spherical and elongated) on the thermal properties and crystallization behavior of isotactic polypropylene was investigated. CaCO3 nanoparticles were covered by an appropriate coating agent to improve the interfacial adhesion between the filler and the polyolefin matrix. The nanocomposites were prepared by melt mixing and subsequent compression molding. A remarkable effect of CaCO3 on the thermal properties of iPP was observed. Moreover, the analysis of crystallization kinetics showed that CaCO3 nanopowder coated with PP-MA are efficient nucleating agents for iPP, and the overall crystallization rate results higher than plain iPP.  相似文献   
93.
Cross-linked epoxy matrices containing small amounts of semi-conductive phthalocyanine (Phthalcon) nanoparticles were prepared using different crosslinking agents and processing temperatures. A starting mixture containing an optimum dispersion of these nanoparticles and with an almost equal and large Hamaker constant was always used. Nevertheless large differences in the relation between the volume conductivity σv and the particle concentration φ were found and this relation appeared to be sensitive to small changes in processing temperature and the application of a post-cure. Also the amine crosslinker chosen and the initial amount of solvent (catalyst) in the starting dispersion had a major effect. It was shown that these changes influence strongly the formation of and the final conductive fractal particle network morphology through the polymer matrix. During processing a local relaxation of the initially formed fractal particle network into another fractal particle network was often observed, which introduced or enlarged the amount of isolating material between the particles of the conductive network and changed the fractality and structure of the conductive backbone of the particle network. This local relaxation lowered the σv at each phthalcon concentration and enlarged φc by several orders of magnitude. The occurrence of local relaxation is dependent on the rate of viscosity change during the crosslinking of the polymer matrix components, the way the fractal conductive particle network is formed during processing (universal or non-universal) and the amount of solvent present. Local relaxation may even occur after the gel point of the polymer matrix. A severe post-cure may be needed to stop this local relaxation. To our knowledge local relaxation of a (fractal) nanoparticle network in a polymer matrix during processing is a new phenomenon, not reported before for polymer composites containing (conductive) nanoparticles.  相似文献   
94.
Physisorption and chemisorption of hydrogen on solid-state materials are two fundamentally different interactions, both of which display advantages and drawbacks for hydrogen storage. It has been hypothesised that their combination by merging two classes of materials showing different sorption behaviour towards hydrogen in the same composite may synergistically combine their desirable properties. As representatives of such composites, palladium nanoparticles, nanoclusters, and single atoms have been encapsulated in a metal-organic framework matrix, embedded, or immobilised in its pores, respectively. In this minireview, we review advances on the understanding and potential applications of the combination of Pd with metal-organic framework matrices through the analysis of the nanocomposite materials’ interaction with hydrogen and sorption properties.  相似文献   
95.
A new electrochemical sensor based on Fe3O4@SiO2‐PANI‐Au nanocomposite was fabricated for modification of glassy carbon electrode (Fe3O4@SiO2‐PANI‐Au GCE). The Fe3O4@SiO2‐PANI‐Au nanocomposite was characterized by TEM, FESEM‐EDS‐Mapping, XRD, and TGA methods. The Fe3O4@SiO2‐PANI‐Au GC electrode exhibited an acceptable sensitivity, fast electrochemical response, and good selectivity for determination of quercetin. Under optimal conditions, the linear range for quercetin concentrations using this sensor was 1.0×10?8 to 1.5×10?5 mol L?1, and the limit of detection was 3.8×10?9 mol L?1. The results illustrated that the offered sensor could be a possible alternative for the measurement of quercetin in food samples and biological fluids.  相似文献   
96.
In this work, a novel extraction technique based on the effervescence‐assisted dispersion and magnetic recovery of attapulgite/polypyrrole sorbents was developed for determining the concentrations of five pyrethroids in honey samples. The magnetic nanoparticles were synthesized by a one‐pot method. Several experimental parameters that affected the extraction efficiency, including the dispersion conditions, pH, ionic strength, and desorption conditions, were investigated. Under optimal conditions, the calibration curves for the five pyrethroids in honey samples exhibited good linearity, with r2 values ranging from 0.9979 to 0.9990. The limits of detection varied between 0.21 and 0.34 µg/L. Satisfactory recoveries of 81.42–106.73% with intra‐ and interday relative standard deviations of less than 6.94 and 10.89%, respectively, were obtained. Moreover, the sorbents exhibited acceptable batch‐to‐batch repeatability in the range of 5.06–15.01%, and each sorbent could be reused for up to four extraction cycles without a significant loss in the extraction recovery.  相似文献   
97.
Carbon nanotubes (CNTs) chemically functionalized were used to synthesize a series of novel nanocomposite hydrogels by in situ polymerization with acrylic acid (AA) and acrylamide (AM). A novel strategy was developed to prepare these hydrogels. CNTs were functionalized following a three-step chemical procedure: (i) purified carbon nanotubes (CNTsp) were partially surface oxidized to obtain CNTs with hydroxyl, carbonyl and carboxyl groups on their sidewalls (CNTsoxi), (ii) CNTsoxi were reacted with oxalyl chloride to obtain CNTs functionalized with acyl chloride groups (CNTsOCl), and (iii) CNTsOCl were reacted with acrylic acid (AA). The product, AA modified CNTsOCl (CNTsOCl-AA) was used to prepare the (CNTsOCl-AA-AM) nanocomposite hydrogels, where anhydride groups were tethered to the surface of the CNTsOCl-AA. The swelling process in water was evaluated as a consequence of the anhydride group hydrolysis, which broke some chemical links between CNTsOCl-AA and crosslinked AA-AM network. Equilibrium-swelling values of all hydrogels increased as the content of AA increased and were larger for AA-AM hydrogels than for CNTsOCl-AA-AM nanocomposite hydrogels. Young’s moduli of CNTsOCl-AA-AM nanocomposite hydrogels prepared with 1 or 2?wt.% AA, reached larger values than those measured for AA-AM hydrogels. This tendency was reversed when the AA content was raised to 3?wt.%.  相似文献   
98.
The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000–1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed “in situ” in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere.  相似文献   
99.
通过一步法绿色合成了CdSe-聚氨酯(CdSe-PU)纳米复合发光材料.在N2保护下,将单质硒(Se)溶于蓖麻油,以蓖麻油酸作为氧化镉(CdO)的配体,合成硒化镉(CdSe)纳米晶.将聚丙二醇2000和异佛尔酮二异氰酸酯(IPDI)合成的预聚体,加入含CdSe纳米晶的蓖麻油溶液,通过交联作用得到CdSe-PU纳米复合发光材料.采用紫外-可见分光光度计(UV-Vis)、荧光光谱仪(PL)、傅里叶红外光谱仪(FT-IR)、热重分析仪(TGA)、透射电子显微镜(TEM)对CdSe纳米晶和聚氨酯复合材料的结构和性能进行了表征.结果表明:此方法合成的CdSe纳米晶性能良好,能在聚氨酯纳米复合材料中均匀分散且性能稳定,CdSe-PU纳米复合材料耐热性有所提高.  相似文献   
100.
Graphene‐supported Si‐TiO2 (Si‐Ti‐GE) composites have been synthesized by a simple polymerization and sintering method. In the Si‐Ti‐GE composites, many small Si‐TiO2 particles are scattered on the graphene sheet, which can mitigate the agglomeration of the material and further reduce the particle size. The initial discharge capacities of Si‐TiO2, Si‐Ti‐GE‐1, Si‐Ti‐GE‐2, and Si‐Ti‐GE‐3 are 336.9, 337.2, 339.8, and 356.6 mAh g−1 at the current density of 200 mA g−1, respectively. The discharge rate capacities of TiO2, Si‐TiO2, and Si‐Ti‐GE‐3 composites retain 57.5%, 41.7%, and 82.1% at the current density from 100 to 400 mA g−1, respectively. Therefore, the introduction of graphene not only could facilitate the Li+ diffusion and electron transport but also could make better electrical conductivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号